


Lecture Notes in Computer Science 5339
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Matthew K. Franklin Lucas Chi Kwong Hui
Duncan S. Wong (Eds.)

Cryptology
and Network
Security

7th International Conference, CANS 2008
Hong-Kong, China, December 2-4, 2008
Proceedings

13



Volume Editors

Matthew K. Franklin
University of California
Department of Computer Science
Davis, CA, USA
E-mail: franklin@cs.ucdavis.edu

Lucas Chi Kwong Hui
The University of Hong Kong
Department of Computer Science
Hong Kong, China
E-mail: hui@cs.hku.hk

Duncan S. Wong
City University of Hong Kong
Department of Computer Science
Hong Kong, China
E-mail: duncan@cityu.edu.hk

Library of Congress Control Number: 2008939862

CR Subject Classification (1998): E.3, D.4.6, F.2.1, C.2, J.1, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-89640-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89640-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12577507 06/3180 5 4 3 2 1 0



Preface

The seventh international conference on Cryptology and Network Security (CANS
2008) was held at HKU Town Center, Hong Kong, China, during December 2–4,
2008. The conference was organized by the Department of Computer Science,
the University of Hong Kong, and was fully supported by the Center for Informa-
tion Security and Cryptography at the University of Hong Kong, the Cyberport
Institute of Hong Kong at the University of Hong Kong and the Department of
Computer Science at the City University of Hong Kong.

The goal of CANS is to promote research on all aspects of network security,
as well as to build a bridge between research on cryptography and network
security. Previous CANS conferences have been held in Taipei, Taiwan (2001),
San Francisco, USA (2002), Miami, USA (2003), Xiamen, China (2005), Suzhou,
China (2006), and Singapore (2007). The conference proceedings of recent years
were published by Springer in the Lecture Notes in Computer Science series.

The Program Committee received 73 submissions, and accepted 27 papers
for presentation. The final versions of the accepted papers, which the authors
finalized on the basis of comments from the reviewers, were included in the
proceedings. The reviewing process took nine weeks; each paper was carefully
evaluated by at least three members from the Program Committee. The indi-
vidual reviewing phase was followed by a Web-based discussion. Based on the
comments and scores given by reviewers, the final decisions on acceptance were
made. We appreciate the hard work of the members of the Program Committee
and the external referees who gave many hours of their valuable time.

In addition to the contributed papers, there were two invited talks. One was
given by Juan Garay and the other one was by Xiaoyun Wang.

We would like to thank all the people involved in organizing this conference.
In particular, we would like to thank the Organizing Committee members, col-
leagues and our student helpers for their time and effort. Finally, we would like
to thank all the authors who submitted papers to the conference.

December 2008 Matthew K. Franklin
Lucas Chi Kwong Hui

Duncan S. Wong



Organization

CANS 2008 was organized by the Department of Computer Science, The Uni-
versity of Hong Kong, China, and held during December 2–4, 2008.

General Chair

Lucas C.K. Hui The University of Hong Kong, China

Program Co-chairs

Matt Franklin UC Davis, USA
Duncan S. Wong City University of Hong Kong, China

Steering Committee

Yvo Desmedt University College London, UK
Matt Franklin UC Davis, USA
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS and ENS, France
Huaxiong Wang Nanyang Technological University, Singapore

Organizing Committee

K.P. Chow The University of Hong Kong, China
Bruce Cheung The University of Hong Kong, China
Lucas C.K. Hui The University of Hong Kong, China
Raymond Szeto The University of Hong Kong, China

Program Committee

Michel Abdalla École Normale Supérieure, France
Joonsang Baek I2R, Singapore
Feng Bao I2R, Singapore
Hao Chen East China Normal University, China
Liqun Chen HP Bristol Labs, UK
Mike Burmester Florida State University, USA
Ed Dawson QUT, Australia
Robert Deng SMU, Singapore
Dengguo Feng Chinese Academy of Sciences, China
Eiichiro Fujisaki NTT Labs, Japan



VIII Organization

Jun Furukawa NEC, Japan
David Galindo University of Malaga, Spain
Aline Gouget Gemalto, France
Aggelos Kiayias University of Connecticut, USA
Eike Kiltz CWI, The Netherlands
Kwangjo Kim Info. and Comm. University, Korea
Dong Hoon Lee Korea University, Korea
Arjen Lenstra EPFL, Switzerland
Benoit Libert UCL, Belgium
Javier Lopez University of Malaga, Spain
Mitsuru Matsui Mitsubishi Electric, Japan
Yi Mu University of Wollongong, Australia
Jörn Müller-Quade Universität Karlsruhe, Germany
Tatsuaki Okamoto NTT Labs, Japan
Giuseppe Persiano Università di Salerno, Italy
Josef Pieprzyk Macquarie University, Australia
C. Pandu Rangan IIT, India
Berry Schoenmakers TU Eindhoven, The Netherlands
Willy Susilo University of Wollongong, Australia
Tsuyoshi Takagi Future University - Hakodate, Japan
Guilin Wang University of Birmingham, UK
Huaxiong Wang NTU, Singapore
Xiaoyun Wang Tsinghua/Shandong University, China
Yiqun Lisa Yin Independent Consultant, USA
Fangguo Zhang Sun Yat-sen University, China
Yunlei Zhao Fudan University, China
Jianying Zhou I2R, Singapore

External Reviewers

Man Ho Au
Shaoying Cai
David Cash
Julien Cathalo
Kyu Young Choi
Ashish Choudary
Ji Young Chun
Andrew Clark
Blandine Debraize
Cécile Delerablée
Nico Döttling
Sharmila devi selvi
Oriol Farras
Clemente Galdi
Debin Gao

Flavio Garcia
Qiong Huang
Xinyi Huang
Vincenzo Iovino
Bum Han Kim
Jangseong Kim
Daniel Kraschewski
Hwaseong Lee
Ji-Seon Lee
Jiguo Li
Jin Li
Tieyan Li
Xibin Lin
Jospeh K. Liu
George Mohay

Paul Morrissey
Kyosuke Osaka
Arpita Patra
Wen-Feng Qi
Yi Qian
Chun Ruan
German Saez
Jason Smith
Xiao Tan
Ivan Visconti
Sree Vivek
Baodian Wei
Jian Weng
Wei Wu
Xiaokang Xiong



Organization IX

Guomin Yang
Yanjiang Yang
Chan Yeob Yeun

Jeong Jae Yu
Yong Yu

Tsz Hon Yuen
Yao-Dong Zhao

Supporting Institutions

Center for Information Security and Cryptography (CISC), The University of
Hong Kong, China
The Cyberport Institute of Hong Kong, The University of Hong Kong, China
Department of Computer Science, City University of Hong Kong, China



Table of Contents

Cryptosystems

Chosen-Ciphertext Secure Proxy Re-encryption without Pairings . . . . . . . 1
Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen

Hybrid Damg̊ard Is CCA1-Secure under the DDH Assumption . . . . . . . . . 18
Yvo Desmedt, Helger Lipmaa, and Duong Hieu Phan

Efficient Dynamic Broadcast Encryption and Its Extension to
Authenticated Dynamic Broadcast Encryption . . . . . . . . . . . . . . . . . . . . . . . 31

Masafumi Kusakawa, Harunaga Hiwatari, Tomoyuki Asano, and
Seiichi Matsuda

Cryptanalysis of Short Exponent RSA with Primes Sharing Least
Significant Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Hung-Min Sun, Mu-En Wu, Ron Steinfeld, Jian Guo, and
Huaxiong Wang

Signatures

Efficient and Short Certificateless Signature . . . . . . . . . . . . . . . . . . . . . . . . . 64
Raylin Tso, Xun Yi, and Xinyi Huang

Sanitizable Signatures Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Tsz Hon Yuen, Willy Susilo, Joseph K. Liu, and Yi Mu

An Efficient On-Line/Off-Line Signature Scheme without Random
Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Marc Joye

On the Security of Online/Offline Signatures and Multisignatures from
ACISP’06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Fagen Li, Masaaki Shirase, and Tsuyoshi Takagi

Identification, Authentication and Key Management

A Killer Application for Pairings: Authenticated Key Establishment in
Underwater Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

David Galindo, Rodrigo Roman, and Javier Lopez

Anonymous and Transparent Gateway-Based Password-Authenticated
Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Michel Abdalla, Malika Izabachène, and David Pointcheval



XII Table of Contents

Cryptanalysis of EC-RAC, a RFID Identification Protocol . . . . . . . . . . . . 149
Julien Bringer, Hervé Chabanne, and Thomas Icart

Cryptographic Algorithms and Protocols

Counting Method for Multi-party Computation over Non-abelian
Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Youming Qiao and Christophe Tartary

Keyword Field-Free Conjunctive Keyword Searches on Encrypted Data
and Extension for Dynamic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk

Analysis and Design of Multiple Threshold Changeable Secret Sharing
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Tiancheng Lou and Christophe Tartary

Black-Box Constructions for Fully-Simulatable Oblivious Transfer
Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Huafei Zhu

Skew Frobenius Map and Efficient Scalar Multiplication for
Pairing–Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Yumi Sakemi, Yasuyuki Nogami, Katsuyuki Okeya,
Hidehiro Kato, and Yoshitaka Morikawa

Stream Ciphers and Block Ciphers

Cryptanalysis of MV3 Stream Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Mohammad Ali Orumiehchi, S. Fahimeh Mohebbipoor, and
Hossein Ghodosi

3D: A Three-Dimensional Block Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Jorge Nakahara Jr.

Cryptographic Foundations

Construction of Resilient Functions with Multiple Cryptographic
Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Chao Li, Shaojing Fu, and Bing Sun

Enumeration of Homogeneous Rotation Symmetric Functions over Fp . . . 278
Shaojing Fu, Chao Li, and Bing Sun

Unconditionally Reliable Message Transmission in Directed
Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Kannan Srinathan, Arpita Patra, Ashish Choudhary, and
C. Pandu Rangan



Table of Contents XIII

Applications and Implementations

An Open Framework for Remote Electronic Elections . . . . . . . . . . . . . . . . . 304
Yu Zhang

Conditional Payments for Computing Markets . . . . . . . . . . . . . . . . . . . . . . . 317
Bogdan Carbunar and Mahesh Tripunitara

High-Speed Search System for PGP Passphrases . . . . . . . . . . . . . . . . . . . . . 332
Koichi Shimizu, Daisuke Suzuki, and Toyohiro Tsurumaru

Workload Characterization of a Lightweight SSL Implementation
Resistant to Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Manuel Koschuch, Johann Großschädl, Udo Payer,
Matthias Hudler, and Michael Krüger

Security in Ad Hoc Networks and Wireless Sensor
Networks

Authenticated Directed Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Eric K. Wang, Lucas C.K. Hui, and S.M. Yiu

A New Message Recognition Protocol for Ad Hoc Pervasive
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Atefeh Mashatan and Douglas R. Stinson

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395



Chosen-Ciphertext Secure Proxy Re-encryption
without Pairings

Robert H. Deng1, Jian Weng1,2, Shengli Liu3, and Kefei Chen3

1 School of Information Systems
Singapore Management University, Singapore 178902

2 Department of Computer Science
Jinan University, Guangzhou 510632, P.R. China

3 Dept. of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, P.R. China

robertdeng@smu.edu.sg, cryptjweng@gmail.com, {slliu,kfchen}@sjtu.edu.cn

Abstract. In a proxy re-encryption system, a semi-trusted proxy can
convert a ciphertext originally intended for Alice into a ciphertext in-
tended for Bob, without learning the underlying plaintext. Proxy re-
encryption has found many practical applications, such as encrypted
email forwarding, secure distributed file systems, and outsourced filtering
of encrypted spam. In ACM CCS’07, Canetti and Hohenberger presented
a proxy re-encryption scheme with chosen-ciphertext security, and left an
important open problem to construct a chosen-ciphertext secure proxy
re-encryption scheme without pairings. In this paper, we solve this open
problem by proposing a new proxy re-encryption scheme without resort
to bilinear pairings. Based on the computational Diffie-Hellman (CDH)
problem, the chosen-ciphertext security of the proposed scheme is proved
in the random oracle model.

Keywords: Proxy re-encryption, bilinear pairing, chosen-ciphertext
security.

1 Introduction

1.1 Background

Imagine that one day you are going on vacation and will be inconvenient to
read your email. You wish to have the mail server forward all of your encrypted
email to your colleague Bob, who can then read the email by only using his own
secret key. A naive way is to have the mail server store your secret key and act
as follows: when an email encrypted for you arrives, the mail server decrypts it
using the stored secret key and re-encrypts the plaintext using Bob’s public key.
However, such a solution is highly undesirable, especially in the case that the
email server is untrustworthy, since the email server learns both the plaintext
and your secret key.

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [4],
is a novel solution to the above situation. In a PRE system, a proxy is given

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R.H. Deng et al.

a re-encryption key rki,j so that it can convert a ciphertext under public key
pki into a ciphertext of the same message under a different public key pkj . The
proxy, however, learns nothing about the messages under either key. Now, as
to the aforementioned situation, you can have the mail server act as a proxy,
and give him the proxy re-encryption key instead of your secret key. Then he
can translate your encrypted emails into those encrypted under Bob’s public
key, without learning the content of the emails. Proxy re-encryptions have found
many other practical applications, such as distributed file systems, outsourced
filtering of encrypted spam, and access control over network storage [1,2,22].

Blaze, Bleumer and Strauss [4] categorized two types of PRE schemes. If the
re-encryption key rki,j allows the proxy to convert ciphertexts under pki into
ciphertexts under pkj and vice versa, then the scheme is called bidirectional.
If rki,j allows the proxy to convert only from pki to pkj , then the scheme is
called unidirectional. Blaze et al. [4] proposed the first bidirectional PRE scheme
in 1998. In 2005, Ateniese et al. [1,2] presented a unidirectional PRE scheme
based on bilinear pairings. Both of these schemes are only secure against chosen-
plaintext attack (CPA). However, applications often require security against
chosen-ciphertext attacks (CCA).

To fill this gap, Canetti and Hohenberger [11] presented an elegant construction
of CCA-secure bidirectional PRE scheme. Later, Libert and Vergnaud [21] pre-
sented a unidirectional PRE scheme with CCA security. Both of these construc-
tions rely on bilinear pairings. In spite of the recent advances in implementation
technique, the pairing computation is still considered as a very expensive opera-
tion compared with standard operations such as modular exponentiation in finite
fields [8]. It would be desirable for cryptosystems to be constructed without rely-
ing on pairings, especially in computation-limited settings. In view of this, Canetti
and Hohenberger [11] left an important open problem in ACM CCS’07, i.e., how
to construct a CCA-secure proxy re-encryption scheme without pairings.

1.2 Our Contributions

In this paper, we circumvent several obstacles to construct a proxy re-encryption
scheme without pairings. Based on the CDH problem, we prove the chosen-
ciphertext security for our proposed scheme in the random oracle model. As
a result, we solve the aforementioned open problem left by Canetti and Ho-
henberger [11] in ACM CCS’07. Compared with existing CCA-secure proxy re-
encryption schemes, our scheme is much more efficient due to the following facts:
(i) our scheme does not use the costly bilinear pairing which is used in existing
CCA-secure proxy re-encryption schemes; (ii) the computational cost and the
ciphertext length in our proxy re-encryption scheme decrease with re-encryption,
whereas those in existing CCA-secure proxy re-encryption schemes remain un-
changed or even increase with re-encryption.

1.3 Related Works

Boneh, Goh and Matsuo [7] described a hybrid proxy re-encryption system
based on the ElGamal-type public key encryption system [14] and Boneh-Boyen’s



Chosen-Ciphertext Secure Proxy Re-encryption 3

identity-based encryption system [3]. Green and Ateniese [16] considered proxy
re-encryption in identity-based scenarios: based on Boneh and Franklin’s
identity-based encryption system [6], they presented the first CPA and CCA-
secure identity-based proxy re-encryption (IB-PRE) schemes in the random or-
acle model. Later, Chu and Tzeng [12] presented the constructions of CPA and
CCA-secure IB-PRE schemes without random oracles.

Another kind of cryptosystems related to proxy re-encryption is the proxy
encryption cryptosystem introduced by Mambo and Okamoto [23]. In a proxy
encryption scheme [18,13], a delegator Alice allows a delegatee Bob to decrypt
ciphertexts intended for her with the help of a proxy: an encryption for Alice is
first partially decrypted by the proxy, and then fully decrypted by Bob. However,
this approach requires that Bob obtain and store an additional secret for each
delegation. In contrast, the delegatee in proxy re-encryption systems only needs
to store his own decryption key.

Proxy re-encryption should not be confused with the universal re-encryption
[17], in which the ciphertexts are re-randomized instead of the underlying public
key being changed.

1.4 Outline

The rest of the paper is organized as follows. Section 2 reviews the definition and
security notions for PRE systems. In Section 3, we first give an intuition for our
construction, and then propose a bidirectional PRE scheme without pairings. A
comparison between our scheme and other existing PRE schemes is also given
in this section. In Section 4, we first review some complexity assumptions, and
then prove the chosen-ciphertext security for our scheme. Finally, Section 5 lists
open research problems and concludes this paper.

2 Definition and Security Notions of Proxy
Re-encryptions

Throughout this section, we concentrate on the bidirectional proxy re-encryptions.
For unidirectional proxy re-encryptions, please refer to [21,1,2].

2.1 Definition

Formally, a bidirectional PRE scheme consists of the following five algorithms
[11]:

KeyGen(1κ): The key generation algorithm takes as input a security parameter
1κ. It generates a public key pk and the corresponding secret key sk.

ReKeyGen(ski, skj): The re-encryption key generation algorithm takes as input
two secret keys ski and skj . It outputs a re-encryption key rki↔j .

Encrypt(pk,m): The encryption algorithm takes as input a public key pk and a
message m ∈ M. It outputs a ciphertext C under pk. Here M denotes the
message space.



4 R.H. Deng et al.

ReEncrypt(rki↔j , Ci): The re-encryption algorithm takes as input a re-
encryption key rki↔j and a ciphertext Ci under public key pki. It outputs
a ciphertext Cj under public key pkj .

Decrypt(sk, C): The decryption algorithm takes as input a secret key sk and a
cipertext C. It outputs a message m ∈M or the error symbol ⊥.

Roughly speaking, the correctness requires that, for allm ∈ M and all (pk, sk) ←
KeyGen(1κ), it holds that Decrypt(sk,Encrypt(pk,m)) = m. Besides, for all
(pki, ski) ← KeyGen(1κ) and (pkj , skj) ← KeyGen(1κ), it holds that Decrypt
(skj ,ReEncrypt(ReKeyGen(ski, skj),Encrypt(pki,m))) = m.

Remark. A proxy re-encryption scheme is said to be multi-hop, if a ciphertext
can be consecutively re-encrypted, i.e., it can be re-encrypted from pk1 to pk2
and then to pk3 and so on. In contrast, a proxy re-encryption scheme is said to be
single-hop, if a re-encrypted ciphertext can not be further re-encrypted. In this
paper, we concentrate on single-hop proxy re-encryption schemes. Besides, for
consistency and easy explanation, we adopt a term as used in [21]: the original
ciphertext is called second-level ciphertext, while the re-encrypted ciphertext is
called first-level ciphertext.

2.2 Security Notions

In this subsection, we review the security notions for PRE systems [11]. Con-
cretely, the chosen-ciphertext security for a PRE scheme Π can be defined via
the following game between an adversary A and a challenger C:

Phase 1. A adaptively issues queries q1, · · · , qm where query qi is one of the
following:

– Uncorrupted key generation query 〈i〉: C first runs algorithm KeyGen to
obtain a public/secret key pair (pki, ski), and then sends pki to A.

– Corrupted key generation query 〈j〉: C first runs algorithm KeyGen to
obtain a public/secret key pair (pkj , skj), and then gives (pkj , skj) to A.

– Re-encryption key generation query 〈pki, pkj〉: C first runs algorithm
ReKeyGen(ski, skj) to generate a re-encryption key rki↔j , and then re-
turns rki↔j to A. Here ski and skj are secret keys with respect to pki

and pkj respectively. It is required that pki and pkj were generated be-
forehand by algorithm KeyGen. As argued in [11], we require that either
both pki and pkj are corrupted, or alternately both are uncorrupted.

– Re-encryption query 〈pki, pkj , Ci〉: C responds with the resulting cipher-
text Cj = ReEncrypt(ReKeyGen(ski, skj), Ci), where ski and skj are se-
cret keys with respect to pki and pkj respectively. It is required that pki

and pkj were generated beforehand by KeyGen.
– Decryption query 〈pk, C〉: Challenger C returns the result of Decrypt

(sk, C) to A, where sk is the secret key with respect to pk. It is required
that pk was generated beforehand by KeyGen.



Chosen-Ciphertext Secure Proxy Re-encryption 5

Challenge. Once A decides that Phase 1 is over, it outputs a target public
key pk∗ and two equal-length plaintexts m0,m1 ∈ M on which it wishes
to be challenged. Here it is required that A did not previously corrupt the
secret key corresponding to pk∗. Challenger C flips a random coin δ ∈ {0, 1},
and sets the challenge ciphertext to be C∗ = Encrypt(pk∗,mδ), which is sent
to A.

Phase 2. A issues additional queries qm+1, · · · , qmax where each of the queries
is one of the following:

– Uncorrupted key generation query 〈i〉: C responds as in Phase 1.
– Corrupted key generation query 〈j〉: C responds as in Phase 1. Here it

is required that pkj �= pk∗. Besides, if A has obtained a derivative1

(pk′, C′) of (pk∗, C∗), it is required that pkj �= pk′.
– Re-encryption key generation query 〈pki, pkj〉: Challenger C responds as

in Phase 1.
– Re-encryption query 〈pki, pkj, Ci〉: Here it is required that pki and pkj

were generated beforehand by algorithm KeyGen. If (pki, Ci) is a deriva-
tive of (pk∗, C∗) and the secret key with respect to pkj has been cor-
rupted, then C responds with the error symbol ⊥. Otherwise, C responds
as in Phase 1.

– Decryption query 〈pk, C〉: Here it is required that pk was generated be-
forehand by algorithm KeyGen. If (pk, C) is a derivative of (pk∗, C∗) or
pk was not generated beforehand by KeyGen, then C responds with the
error symbol ⊥. Else, C responds as in Phase 1.

Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.

We refer to adversary A as an IND-PRE-CCA adversary, and we define his
advantage in attacking scheme Π as

AdvIND-PRE-CCA
Π,A =

∣∣Pr[δ′ = δ] − 1
2

∣∣,
where the probability is taken over the random coins consumed by the challenger
and the adversary. Note that the chosen plaintext security for a PRE scheme can
be similarly defined as the above game except that the adversary is not allowed
to issue any decryption queries.
1 Derivative of (pk∗, C∗) is inductively defined in [11] as below:

1. (pk∗, C∗) is a derivative of itself;
2. If (pk,C) is a derivative of (pk∗, C∗) and (pk′, C′) is a derivative of (pk, C), then

(pk′, C′) is a derivative of (pk∗, C∗).
3. If A has issued a re-encryption query 〈pk, pk′, C〉 and obtained the resulting re-

encryption ciphertext C′, then (pk′, C′) is a derivative of (pk, C).
4. If A has issued a re-encryption key generation query 〈pk, pk′〉 or 〈pk′, pk〉, and

Decrypt(sk′, C′) ∈ {m0, m1} (here sk′ is the secret key with respect to pk′), then
(pk′, C′) is a derivative of (pk, C).



6 R.H. Deng et al.

Definition 1. A PRE scheme Π is said to be (t, qu, qc, qrk, qre, qd, ε)-IND-PRE-
CCA secure, if for any t-time IND-PRE-CCA adversary A who makes at most qu
uncorrupted key generation queries, at most qc corrupted key generation queries,
at most qrk re-encryption key generation queries, at most qre re-encryption
queries and at most qd decryption queries, we have AdvIND-PRE-CCA

Π,A ≤ ε.

3 Proposed Proxy Re-encryption Scheme

In this section, we will describe the main idea of our PRE scheme, and then
propose the concrete construction. A comparison between our scheme and other
PRE schemes is also given in this section.

Before going on, we explain some notations used in the rest of this paper:
For a prime q, let Zq denote the set {0, 1, 2, · · · , q − 1}, and Z∗

q denote Zq\{0}.
For a finite set S, x $← S means choosing an element x from S with a uniform
distribution.

3.1 Main Idea

The idea behind our construction begins with the CCA-secure “hashed” ElGamal
encryption scheme [14,9,15] given in Figure 1. It is important to note that, in
the ciphertext component F = H2(pkr)⊕ (m‖ω), the public key pk is embedded
in the hash function H2 and masked by (m‖ω). This frustrates the proxy to re-
encrypt the ciphertext, and hence this original scheme can not be directly used
for our PRE scheme. To circumvent this obstacle, we slightly modify the scheme
as shown in Figure 2 (see the bolded parts). Now, the ciphertext component F
does not involve the public key, and the ciphertext component E = pkr = gxr

can be successfully re-encrypted into another ciphertext component E′ = E
y
x =

gyr(under the public key pk′ = gy) using the re-encryption key rkx↔y = y
x .

Indeed, the modified scheme can achieve the chosen-ciphertext security as
a traditional public key encryption. However, it does not satisfy the chosen-
ciphertext security for proxy re-encryptions. To explain more clearly, let’s take
the following attack as an example:

Suppose A is given a challenged ciphertext under a target public key pk∗ =
gx, say C∗ = (E∗, F ∗) =

(
gxr∗

, H2(gr∗
) ⊕ (mδ‖ω∗)

)
. Then adversary A can

win the IND-PRE-CCA game as follows: He first picks z $← {0, 1}l0+l1 , and
modifies the challenged ciphertext to get a new, although invalid, ciphertext

Setup(1κ): Encrypt(pk,m): Decrypt((E,F ), sk):

x
$← Z∗

q ; pk = gx; sk = x ω
$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(Esk)

Return (pk, sk) E = gr;F = H2(pkr) ⊕ (m‖ω) If E = gH1(m,ω) return m
Return C = (E,F ) Else return ⊥

Note: H1 and H2 are hash functions such that H1 : {0, 1}l0 × {0, 1}l1 → Z∗
q , H2 : G → {0, 1}l0+l1 .

The massage space is M = {0, 1}l0 .

Fig. 1. CCA-secure “hashed” ElGamal encryption scheme



Chosen-Ciphertext Secure Proxy Re-encryption 7

Setup(1κ): Encrypt(pk,m): Decrypt((E,F ), sk):

x
$← Z∗

q ; pk = gx; sk = x ω
$← {0, 1}l1 ; r = H1(m,ω) m‖ω = F ⊕H2(E

1
sk )

Return (pk, sk) E = pkr;F = H2(gr) ⊕ (m‖ω) If E = gH1(m,ω) return m
Return C = (E,F ) Else return ⊥

Fig. 2. Modified CCA-secure “hashed” ElGamal encryption scheme

C′ = (E′, F ′) = (E∗, F ∗ ⊕ z) = (gxr∗
, H2(gr∗

) ⊕ (mδ‖ω∗) ⊕ z). Next, he issues
a corrupted key generation query to obtain a public/secret key pair (pk′, sk′) =
(gy, y), and then issues a re-encryption query to obtain a re-encrypt ciphertext,
say C′′ = (E′′, F ′′) = (gyr∗

, H2(gr∗
)⊕ (mδ‖ω∗)⊕ z), under the public key pk′ =

gy. Finally, using the secret key sk′ = y, A can recover (mδ‖ω∗) as (mδ‖ω∗) =
F ′′⊕H2((E′′)

1
y )⊕z, and eventually obtain the bit δ. Note that according to the

constraints described in the IND-PRE-CCA game, it is legal for A to issue the
above queries. As a consequence, he wins the IND-PRE-CCA game.

The above attack succeeds due to the fact that, the validity of second-level
ciphertexts can only be checked by the decryptor, not any other parties including
the proxy. So, to achieve the IND-PRE-CCA security for a PRE scheme, the
proxy must be able to check the validity of second-level ciphertexts. Furthermore,
since a PRE scheme requires the proxy to re-encrypt ciphertexts without seeing
the plaintexts, the validity of second-level ciphertexts must be publicly verifiable.
It is worth noting that, it is not an easy job to construct a CCA-secure PRE
scheme with public verifiability and yet without pairings (e.g., all existing CCA-
secure PRE schemes achieve the public verifiability relying on bilinear pairings).

In this paper, we achieve this goal by resorting to the Schnorr signature scheme
[24], which is given in Figure 3. Note that it is non-trivial to incorporate the
Schnorr signature scheme into the modified ElGamal encryption scheme to ob-
tain a secure PRE scheme. One may think that, it can be done by choosing a
signing/verification key pair (vks, sks), signing the ciphertext C to obtain a sig-
nature σ, and publishing (vks, C, σ) as the final ciphertext. Unfortunately, this
does not work, since the adversary can still harmfully maul the above ciphertext.
Namely, he can choose another signing/verification key pair to sign the cipher-
text component C, and then obtain another valid ciphertext. The problem lies in
the loose integration between the ciphertext component C and the signature σ.

We here briefly explain how to tightly integrate the Schnorr signature scheme
with the modified ElGamal encryption scheme to obtain our PRE scheme. To do
so, we first slightly modify the Schnorr signature scheme as shown in Figure 4 (see

Setup(1κ): Sign(sk,m): Verify(pk, (e, s),m):

x
$← Z∗

q ; pk = gx; sk = x u
$← Z∗

q ;D = gu Dv = gspk−e; ev = H(m,Dv)
Return (pk, sk) e = H(m,D); s = (u+ sk · e) mod q If e = ev return 1

Return σ = (e, s) Else return 0
Note: H is a hash function such that H : {0, 1}∗ → Z∗

q .

Fig. 3. Schnorr signature scheme



8 R.H. Deng et al.

Setup(1κ): Sign(sk,m): Verify(pk, (D, s),m):

x
$← Z∗

q ; pk = gx; sk = x u
$← Z∗

q ;D = gu If gs = D · pkH(m,D) return 1
Return (pk, sk) e = H(m,D); s = (u+ sk · e) mod q Else return 0

Return σ = (D, s)

Fig. 4. Modified Schnorr signature scheme

the bolded parts). Next, given the ciphertext components (E,F ) = (pkr, H2(gr)⊕
(m‖ω)), to tightly integrate (E,F ) with the Schnorr signature, we generate the
Schnorr signature as follows: Viewing F as the message to be signed, and (E, r) =
(pkr, r) as the verification/signing key pair (here the base pk in pkr is similarly

viewed as the base g in gx), we pick u $← Z∗
q and output the signature as (D, s) =

(pku, u+ rH3(D,E, F )). The final ciphertext is (D,E, F, s). We here also briefly
explain the re-encryption algorithm: Suppose the proxy wants to re-encrypt a ci-
phertext C = (D,E, F, s) under public key pk = gx to another one under public
key pk′ = gy. The proxy first checks pks ?= D · EH3(D,E,F ) to ensure the validity
of the ciphertext, and then outputs C′ = (E′, F ) = (E

y
x , F ) as the re-encrypted

ciphertext (here y
x is the re-encryption key).

Roughly speaking, the intuition why our PRE scheme can ensure the IND-
PRE-CCA security comes from the following facts: on the one hand, the first-
level ciphertext is in fact a ciphertext of the modified CCA-secure ElGamal
encryption scheme, and hence it is impossible for the adversary to gain any
advantage through malicious manipulating the first-level ciphertext; on the other
hand, the validity of the second-level ciphertext can be verified by the proxy and
further by the decryptor, and thus it is also impossible for the adversary to gain
any advantage through malicious manipulating the second-level ciphertext. In
Section 4, we will give a formal security proof for our PRE scheme.

3.2 Construction

We now present the detailed construction of our PRE scheme. Here let’s first
describe some system-wide parameters. Let p and q be two big primes such that
q|p − 1 and the bit-length of q is κ. Let g be a generator of group G, which
is a subgroup of Z∗

p with order q. Besides, let H1, H2 and H3 be cryptographic
hash functions such that H1 : {0, 1}l0 × {0, 1}l1 → Z∗

q , H2 : G → {0, 1}l0+l1 and
H3 : {0, 1}∗ → Z∗

q . Here l0 and l1 are security parameters, and the message space
is {0, 1}l0. The proposed PRE system consists of the following algorithms:

KeyGen(1κ): Given a security parameter 1κ, this key generation algorithm picks

a random x
$← Z∗

q , and then sets pk = gx and sk = x.
ReKeyGen(ski, skj): On input two secret keys ski = xi and skj = xj , this

algorithm outputs the bidirectional re-encryption key rki↔j = xj/xi mod q.
Encrypt(pk,m): On input a public key pk and a plaintext m ∈ {0, 1}l0, this

algorithm works as below:



Chosen-Ciphertext Secure Proxy Re-encryption 9

1. Pick u $← Z∗
q , ω

$← {0, 1}l1, and compute r = H1(m,ω).
2. Compute D = pku, E = pkr, F = H2(gr)⊕(m‖ω), s = u+r·H3(D,E, F )

mod q.
3. Output the ciphertext C = (D,E, F, s).

ReEncrypt(rki↔j , Ci, pkj): On input a re-encryption key rki↔j , a second-level
ciphertext Ci under public key pki, this algorithm re-encrypt this ciphertext
under public key pkj as follows:
1. Parse Ci as Ci = (D,E, F, s).
2. Check whether pks

i = D ·EH3(D,E,F ) holds. If not, output ⊥.
3. Otherwise, compute E′ = Erki↔j = g(r·xi)xj/xi = gr·xj , and output the

first-level ciphertext Cj = (E′, F ).
Decrypt(C, sk): On input a secret key sk = x and ciphertext C, this algorithm

works according to two cases:
– C is a second-level ciphertext C = (D,E, F, s): If (gx)s = D ·EH3(D,E,F )

does not hold, output ⊥, else compute m‖ω = F ⊕H2(E
1
x ), and return

m if E = (gx)H1(m,ω) holds and ⊥ otherwise.
– C is a first-level ciphertext C = (E′, F ): Compute m‖ω = F ⊕H2(E′ 1

x ).
If E′ = (gx)H1(m,ω) holds return m; otherwise return ⊥.

3.3 Comparison

In this subsection, we provide a comparison of our scheme with other
existing PRE schemes. To conduct a fair comparison, we choose Canetti and Ho-
henberger’s PRE schemes [11], which are also bidirectional and achieve chosen-
ciphertext security. Two PRE schemes are presented in [11], including one
secure in the random oracle model (refereed to as CH Scheme I) and another
one secure in the standard model (refereed to as CH Scheme II). Table 1 gives a
comparison between our scheme and these two schemes. The comparison results
indicate that our scheme is much more efficient than the other two schemes.
For example, the encryption in CH Scheme I needs 4 exponentiations, 1 pairing
and 1 one-time signature signing, while the encryption in our scheme involves
only 3 exponentiations. It’s worth pointing out that, the computational cost and
the ciphertext size in our scheme decrease with re-encryption, while those in
CH Schemes I and II remain unchanged. Note that the computational cost and
the ciphertext in some schemes such as [1,2,12,21] increase with re-encryption.
Although the ciphertext in our scheme involves less group elements than that
in CH Schemes I and II, we do not claim that our ciphertext is shorter than
theirs, since their schemes are implemented in the bilinear group which enables
short representation of a group element. However, the pairings in bilinear group
in turn add heavy computational overhead to their schemes. The security of our
scheme relies on the CDH assumption, which is weaker than the decisional bi-
linear Diffie-Hellman (DBDH) assumption used in CH Schemes I and II. Both
our scheme and CH Scheme I are provably secure in the random oracle model,
while CH Scheme II can be proved without random oracles. We leave an open
problem to construct a CCA-secure PRE scheme relying on neither pairing nor
random oracle model.



10 R.H. Deng et al.

Table 1. Efficiency Comparison between Canetti-Hohenberger PRE Schemes and Our
Scheme3

Schemes CH Scheme I CH Scheme II Our Scheme
Encrypt 1tp + 4te + 1ts 1tp + 3te + 1tme + 1ts 3te

Comput. Re-Encrypt 4tp + 1te + 1tv 4tp + 2te + 1tv 3te
Cost 2nd-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 4teDecrypt

1st-level CiphTxt 5tp + 1te + 1tv 5tp + 2te + 1tv 2te
CiphTxt 2nd-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 3|G|+1|Zq|
Length 1st-level CiphTxt 1|pks|+3|Ge|+1|GT |+1|σs| 1|pks|+3|Ge|+1|GT |+1|σs| 2|G|
Without Random Oracles? × � ×
Underlying Assumptions DBDH DBDH CDH

Note: tp, te and tme represent the computational cost of a bilinear pairing, an exponentiation and

a multi-exponentiation respectively, while ts and tv represent the computational cost of a one-time

signature signing and verification respectively. |G|, |Zq|, |Ge| and |GT | denote the bit-length of an

element in groups G, Zq , Ge and GT respectively. Here G and Zq denote the groups used in our

scheme, while Ge and GT are the bilinear groups used in CH scheme I and II, i.e., the bilinear

pairing is e: Ge × Ge → GT . Finally, |pks| and |σs| denote the bit length of the one-time signatures

public key and a one-time signature respectively.

4 Security Analysis

In this section, we prove the IND-PRE-CCA security for our scheme in the
random oracle model. Before presenting the security analysis, we first review
some related complexity assumptions.

4.1 Complexity Assumptions

Definition 2. Let G be a cyclic multiplicative group with prime order q. The
computational Diffie-Hellman (CDH) problem in group G is, given a tuple

(g, ga, gb) ∈ G3 with unknown a, b $← Z∗
q , to compute gab.

Definition 3. For a polynomial-time adversary B, we define his advantage in
solving the CDH problem in group G as

AdvCDH
B � Pr

[
B(g, ga, gb) = gab

]
,

where the probability is taken over the randomly choices of a, b and the random
bits consumed by B. We say that the (t, ε)-CDH assumption holds in group G if
no t-time adversary B has advantage at least ε in solving the CDH problem in
group G.

Bao et al. [5] introduced a variant of the CDH problem named divisible com-
putation Diifie-Hellman (DCDH) problem. The DCDH problem in group G is,
3 In Table 1, we neglect some operations such as hash function evaluation, modular

multiplication and XOR, since the computational cost of these operations is far less
than that of exponentiations or pairings. Note that, using the technique in [10,19,20],
both the re-encryption and decryption in CH scheme I and II can further save two
pairings, at the cost of several exponentiation operations.



Chosen-Ciphertext Secure Proxy Re-encryption 11

given (g, g
1
a , gb) ∈ G3 with unknown a, b $← Z∗

q , to compute gab. In [5], Bao
et al. presented the relation between CDH problem and DCDH problem in the
following lemma:

Lemma 1. The DCDH problem in group G is equivalent to the CDH problem
in the same group.

4.2 Security Proof

In this subsection, we present the security proof for our scheme.

Theorem 1. Our PRE scheme is IND-PRE-CCA secure in the random ora-
cle model, assuming the CDH assumption holds in group G and the Schnorr
signature is existential unforgeable against chosen message attack (EUF-CMA).
Concretely, if there exists a (t, qH1 , qH2 , qH3 , qu, qc, qrk, qre, qd, ε)-IND-PRE-CCA
adversary A against our scheme, then, for any 0 < ν < ε, there exists

– either an algorithm B which can solve the (t′, ε′)-CDH problem in group G
with

t′ ≤ t+ (qH1 + qH2 + qH3 + qu + qc + qrk + qre + qd)O(1)
+ (qu + qc + 3qre + 2qH1qd)te,

ε′ ≥ 1
qH2

(
2(ε− ν) − qH1(1 + qd)

2l0+l1
− qre + qd

q

)
,

where te denotes the running time of an exponentiation in group G.
– or an attacher who breaks the EUF-CMA security of the Schnorr signature

with advantage ν within time t′.

Proof. Without loss of generality, we assume that the Schnorr signature is (t′, ν)-
EUF-CMA secure for some probability 0 < ν < ε. Since the CDH problem is
equivalent to the DCDH problem, for convenience, we here prove this theorem
under the DCDH problem. Suppose there exists a t-time adversary A who can
break the IND-PRE-CCA security of the proposed PRE scheme with advantage
ε − ν. Then we show how to construct an algorithm B which can solve the
(t′, ε′)-DCDH problem in group G.

Suppose B is given as input an DCDH challenge tuple (g, g
1
a , gb) with unknown

a, b
$← Z∗

p. Algorithm B’s goal is to output gab. Algorithm B acts as the challenger
and plays the IND-PRE-CCA game with adversary A in the following way.

Hash Oracle Queries. At any time adversary A can issue the random oracle
queries H1, H2 and H3. Algorithm B maintains three hash lists H list

1 , H list
2 and

H list
3 which are initially empty, and responds as below:

– H1 queries : On receipt of an H1 queries on (m,ω), if this query has appeared
on the H list

1 in a tuple (m,ω, r), return the predefined value r as the result

of the query. Otherwise, choose r $← Z∗
q , add the tuple (m,ω, r) to the list

H list
1 and respond with H1(m,ω) = r.



12 R.H. Deng et al.

– H2 queries : On receipt of an H2 query R ∈ G, if this query has appeared
on the H list

2 in a tuple (R, β), return the predefined value β as the result of

the query. Otherwise, choose β $← {0, 1}l0+l1 , add the tuple (R, β) to the list
H list

2 and respond with H2(R) = β.
– H3 queries : On receipt of an H3 query (D,E, F ), if this query has appeared

on the H list
3 in a tuple (D,E, F, γ), return the predefined value γ as the

result of the query. Otherwise, choose γ $← Z∗
q , add the tuple (D,E, F, γ) to

the list H list
3 and respond with H3(D,E, F ) = γ.

Phase 1. In this phase, adversary A issues a series of queries as in the definition
of the IND-PRE-CCA game. B maintains a list K list which is initially empty,
and answers these queries for A as follows:

– Uncorrupted key generation query 〈i〉. Algorithm B first picks xi
$← Z∗

q and
defines pki =

(
g1/a

)xi
, ci = 0. Next, it adds the tuple (pki, xi, ci) to K list

and returns pki to adversary A. Here the bit ci is used to denote whether the
secret key with respect to pki is corrupted, i.e., ci = 0 indicates uncorrupted
and ci = 1 means corrupted.

– Corrupted key generation query 〈j〉. Algorithm B first picks xj
$← Z∗

q and
defines pkj = gxj , cj = 1. Next, it adds the tuple (pkj , xj , cj) to K list and
returns (pkj , xj) to adversary A.

– Re-encryption key generation query 〈pki, pkj〉: Recall that according to the
definition of IND-PRE-CCA game, it is required that pki and pkj were gen-
erated beforehand, and either both of them are corrupted or alternately
both are uncorrupted. Algorithm B first recovers tuples (pki, xi, ci) and
(pkj , xj , cj) from K list, and then returns the re-encryption key xj/xi to A.

– Re-encryption query 〈pki, pkj , Ci(= (D,E, F, s))〉: If pks
i �= D · EH3(D,E,F ),

then output ⊥. Otherwise, algorithm B responds to this query as follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from K list (recall that ac-
cording to the definition of IND-PRE-CCA game, K list should contain
these two tuples).

2. If ci = cj , compute E′ = Exj/xi and return (E′, F ) as the first-level
ciphertext to A.

3. Else, search whether there exists a tuple (m,ω, r) ∈ H list
1 such that

pkr
i = E. If yes, compute E′ = pkr

j and return (E′, F ) as the first-level
ciphertext to A; otherwise return ⊥.

– Decryption query 〈pk, C〉: Recall that according to the definition of IND-
PRE-CCA game, K list should contain a tuple (pk, x, c) with respect to the
public key pk. Algorithm B responds to this query as follows:

1. If c = 1 (which means that the public key is corrupted and the corre-
sponding secret key is x), algorithm B runs Decrypt(C, x) and returns
the result to A.



Chosen-Ciphertext Secure Proxy Re-encryption 13

2. Otherwise, parse C as C = (D,E, F, s) (in the case of a second-level
ciphertext) or C = (E,F ) (in the case of a first-level ciphertext). If
C = (D,E, F, s) and pks �= D · EH3(D,E,F ), return ⊥ to A indicating
that C is an invalid ciphertext.

3. Search lists H list
1 and H list

2 to see whether there exist (m,ω, r) ∈ H list
1

and (R, β) ∈ H list
2 such that

pkr = E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it outputs a target public key
pk∗ and two equal-length messages m0,m1 ∈ {0, 1}l0. Algorithm B responds as
follows:

1. Recover tuple (pk∗, x∗, c∗) from H list
1 . Recall that according to the con-

straints described in IND-PRE-CCA game, H list
1 should contain this tuple,

and c∗ is equal to 0 (indicating that pk∗ = g
x∗
a ).

2. Pick e∗, s∗ $← Z∗
q , and compute D∗ =

(
gb
)−e∗x∗ (

g
1
a

)x∗s∗

and E∗ =
(
gb
)x∗

.

3. Pick F ∗ $← {0, 1}l0+l1 and define H3(D∗, E∗, F ∗) = e∗.

4. Pick δ $← {0, 1}, ω∗ $← {0, 1}l1, and implicitly define H2(gab) = (mδ‖ω∗)⊕F ∗

and H1(mδ, ω
∗) = ab (Note that algorithm B does not know ab and gab).

5. Return C∗ = (D∗, E∗, F ∗, s∗) as the challenged ciphertext to adversary A.

Note that by the construction given above, by letting u∗ � s∗−abe∗ and r∗ � ab,
we can see that the challenged ciphertext C∗ has the same distribution as the
real one, since H2 acts as a random oracle, and

D∗ =
(
gb
)−e∗x∗ (

g
1
a

)x∗s∗

=
(
g

x∗
a

)s∗−abe∗

= (pk∗)s∗−abe∗
= (pk∗)u∗

,

E∗ =
(
gb
)x∗

=
(
g

x∗
a

)ab

= (pk∗)ab = (pk∗)r∗
,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗
) ⊕ (mδ‖ω∗),

s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).

Phase 2. Adversary A continues to issue the rest of queries as in Phase 1, with
the restrictions described in the IND-PRE-CCA game. Algorithm B responds to
these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to B. Algorithm B
randomly picks a tuple (R, β) from the list H list

2 and outputs R as the solution
to the given DCDH instance.



14 R.H. Deng et al.

Analysis. Now let’s analyze the simulation. The main idea of the analysis is
borrowed from [8]. We first evaluate the simulations of the random oracles. From
the construction of H3, it is clear that the simulation of H3 is perfect. As long
as adversary A does not query (mδ, ω

∗) to H1 nor gab to H2, where δ and ω∗ are
chosen by B in the Challenge phase, the simulations of H1 and H2 are perfect.
By AskH∗

1 we denote the event that (mδ, ω
∗) has been queried to H1. Also, by

AskH∗
2 we denote the event that gab has been queried to H2.

As argued before, the challenged ciphertext provided for A is identically dis-
tributed as the real one from the construction. From the description of the
simulation, it can be seen that the responses to A’s re-encryption key queries
are also perfect.

Next, we analyze the simulation of the re-encryption oracle. The responses
to adversary A’s re-encryption queries are perfect, unless A can submit valid
second-level ciphertexts without querying hash function H1(denote this event by
ReEncErr). However, since H1 acts as a random oracle and adversary A issues
at most qre re-encryption queries, we have

Pr[ReEncErr] ≤ qre

q
.

Now, we evaluate the simulation of the decryption oracle. The simulation of the
decryption oracle is perfect, with the exception that simulation errors may occur
in rejecting some valid ciphertext. Fortunately, these errors are not significant
as shown below: Suppose that (pk, C), where C = (D,E, F, y) or C = (E,F ),
has been issued as a valid ciphertext. Even C is valid, there is a possibility that
C can be produced without querying gr to H2, where r = H1(m,ω). Let Valid
be an event that C is valid, and let AskH2 and AskH1 respectively be events that
gr has been queried to H2 and (m,ω) has been queried to H1 with respect to
(E,F ) = (pkr, H2(gr) ⊕ (m‖ω)), where r = H1(m,ω). We then have

Pr[Valid|¬AskH2] = Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]
≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2]

≤ qH1

2l0+l1
+

1
q
.

Let DecErr be the event that Valid|¬AskH2 happens during the entire simulation.
Then, since qd decryption oracles are issued, we have

Pr[DecErr] ≤ qH1qd
2l0+l1

+
qd
q
.

Now let Good denote the event AskH∗
2 ∨ (AskH∗

1|¬AskH∗
2) ∨ ReEncErr ∨ DecErr.

If event Good does not happen, it is clear that adversary A can not gain any
advantage in guessing δ due to the randomness of the output of the random oracle
H2. Namely, we have Pr[δ = δ′|¬Good] = 1

2 . Hence, by splitting Pr[δ′ = δ], we
have



Chosen-Ciphertext Secure Proxy Re-encryption 15

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1
2
Pr[¬Good] + Pr[Good]

=
1
2
(1 − Pr[Good]) + Pr[Good]

=
1
2

+
1
2
Pr[Good]

and

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1
2
(1 − Pr[Good]) =

1
2
− 1

2
Pr[Good].

Then we have ∣∣Pr[δ′ = δ]− 1
2

∣∣ ≤ 1
2
Pr[Good].

By definition of the advantage (ε−ν) for the IND-PRE-CCA adversary, we then
have

ε− ν =
∣∣Pr[δ′ = δ]− 1

2

∣∣
≤ 1

2
Pr[Good] =

1
2

(Pr[AskH∗
2 ∨ (AskH∗

1|¬AskH∗
2) ∨ ReEncErr ∨ DecErr])

≤ 1
2

(Pr[AskH∗
2] + Pr[AskH∗

1|¬AskH∗
2] + Pr[ReEncErr] + Pr[DecErr]) .

Since Pr[ReEncErr] ≤ qre

q , Pr[DecErr] ≤ qH1qd

2l0+l1 + qd

q and Pr[AskH∗
1|¬AskH∗

2] ≤
qH1

2l0+l1 , we obtain

Pr[AskH∗
2] ≥ 2(ε− ν) − Pr[AskH∗

1|¬AskH∗
2] − Pr[DecErr] − Pr[ReEncErr]

≥ 2(ε− ν) − qH1

2l0+l1
− qre

q
− qH1qd

2l0+l1
+
qd
q

= 2(ε− ν) − qH1(1 + qd)
2l0+l1

− qre + qd
q

.

Meanwhile, if event AskH∗
2 happens, algorithm B will be able to solve the DCDH

instance, and consequently, we obtain

ε′ ≥ 1
qH2

(
2(ε− ν) − qH1(1 + qd)

2l0+l1
− qre + qd

q

)
.

From the description of the simulation, the running time of algorithm B can be
bounded by

t′ ≤ t+ (qH1 + qH2 + qH3 + qu + qc + qrk + qre + qd)O(1) + (qu + qc + 3qre + 2qH1qd)te.

This completes the proof of Theorem 1.



16 R.H. Deng et al.

5 Conclusions

We presented a new bidirectional proxy re-encryption scheme, and proved its
security under the computational Diffie-Hellman problem. Our proposed scheme
does not rely on the costly bilinear pairings, and hence is very efficient. As a
result, we solved the open problem left by Canetti and Hohenberger in ACM
CCS’07.

We left some open problems in this area, such as designing (1) bidirectional
/unidirectional CCA-secure proxy re-encryption scheme without pairings in
the standard model and (2) bidirectional/unidirectional CCA-secure proxy
re-encryption scheme with multi-hop and without pairings.

Acknowledgements

This work is supported by the Office of Research, Singapore Management Uni-
versity. It is also partially supported by the National Science Foundation of
China under Grant Nos. 90704004 and 60673077.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. In: Proc. of NDSS 2005,
pp. 29–43 (2005)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. ACM Transactions on
Information and System Security (TISSEC) 9(1), 1–30 (2006)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

5. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

6. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Goh, E.-J., Matsuo, T.: Proposal for P1363.3 Proxy Re-encryption,
http://grouper.ieee.org/groups/1363/IBC/submissions/

NTTDataProposal-for-P1363.3-2006-09-01.pdf

8. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless Public Key Encryption with-
out Pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005)

9. Baek, J., Safavi-Naini, R., Susilo, W.: Certificatless Public Key Encryption with-
out Pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005)

http://grouper.ieee.org/groups/1363/IBC/submissions/NTTDataProposal-for-P1363.3-2006-09-01.pdf
http://grouper.ieee.org/groups/1363/IBC/submissions/NTTDataProposal-for-P1363.3-2006-09-01.pdf


Chosen-Ciphertext Secure Proxy Re-encryption 17

10. Canetti, R., Goldwasser, S.: An Efficient Threshold Public Key Cryptosystem Se-
cure against Adaptive Chosen Ciphertext Attack. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

11. Caneti, R., Hohenberger, S.: Chosen-Ciphertext Secure Proxy Re-Encryption. In:
Proceeding of ACM CCS 2007 (2007)

12. Chu, C., Tzeng, W.: Identity-Based Proxy Re-Encryption without Random Or-
acles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

13. Dodis, Y., Ivan, A.-A.: Proxy Cryptography Revisited. In: Proc. of NDSS 2003
(2003)

14. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

15. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

16. Green, M., Ateniese, G.: Identity-Based Proxy Re-Encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

17. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal Re-Encryption for
Mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

18. Jakobsson, M.: On Quorum Controlled Asymmetric Proxy Re-encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg
(1999)

19. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation without Random Oracles. Cryptology ePrint Archive, Report 2006/034
(2006), http://eprint.iacr.org/

20. Kiltz, E.: Chosen-Ciphertext Secure Identity-Based Encryption in the Standard
Model with Short Ciphertexts. Cryptology ePrint Archive, Report 2006/122 (2006),
http://eprint.iacr.org/

21. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

22. Matsuo, T.: Proxy Re-Encryption Systems for Identity-Based Encryption. In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247–267. Springer, Heidelberg (2007)

23. Mambo, M., Okamoto, E.: Proxy Cryptosystems: Delegation of the Power to De-
crypt Ciphertexts. IEICE Trans. Fund. Electronics Communications and Computer
Science E80-A(1), 54–63 (1997)

24. Schnorr, C.P.: Efficient Identifications and Signatures for Smart Cards. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–251. Springer, Heidelberg
(1990)

http://eprint.iacr.org/
http://eprint.iacr.org/


Hybrid Damgård Is CCA1-Secure under the DDH
Assumption

Yvo Desmedt1, Helger Lipmaa2, and Duong Hieu Phan3

1 University College London, UK
2 Cybernetica AS, Estonia

3 University of Paris 8, France

Abstract. In 1991, Damgård proposed a simple public-key cryptosystem that
he proved CCA1-secure under the Diffie-Hellman Knowledge assumption.
Only in 2006, Gjøsteen proved its CCA1-security under a more standard
but still new and strong assumption. The known CCA2-secure public-key
cryptosystems are considerably more complicated. We propose a hybrid variant
of Damgård’s public-key cryptosystem and show that it is CCA1-secure if the
used symmetric cryptosystem is CPA-secure, the used MAC is unforgeable,
the used key-derivation function is secure, and the underlying group is a DDH
group. The new cryptosystem is the most efficient known CCA1-secure hybrid
cryptosystem based on standard assumptions.

Keywords: CCA1-security, Damgård’s cryptosystem, DDH, hybrid
cryptosystems.

1 Introduction

CCA2-security in the standard model is currently the strongest widely accepted security
requirement for public-key cryptosystems. The first practical CCA2-secure cryptosys-
tem was proposed by Cramer and Shoup [CS98]. In their scheme, the plaintext is a
group element. However, in practice one really needs a hybrid cryptosystem where the
plaintext can be an arbitrarily long bitstring. The first related hybrid cryptosystem was
proposed by Shoup in [Sho00]. In [KD04], Kurosawa and Desmedt proposed another
hybrid cryptosystem that, taking account the comments of Gennaro and Shoup [GS04],
is up to now the most efficient published hybrid CCA2-secure cryptosystem that is
based on the Decisional Diffie-Hellman (DDH) assumption.

Existing CPA-secure cryptosystems like Elgamal [Elg85] are considerably simpler.
CPA-security is however a very weak security notion. In this paper we concentrate
on an intermediate security notion, CCA1-security (or “non-adaptive CCA-security”).
Recall that already in 1991, Damgård [Dam91] proposed a simple CCA1-secure cryp-
tosystem, although with the security proof relying on the non-standard Diffie-Hellman
Knowledge assumption [Dam91, BP04]. In 2006, Gjøsteen proved that a general-
ization of Damgård’s cryptosystem is CCA1-secure under a strong conventional as-
sumption [Gjø06]. Recently, Lipmaa [Lip08] gave a considerably simpler proof of
Gjøsteen’s result.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 18–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Hybrid Damgård Is CCA1-Secure 19

Table 1. Comparison between a few discrete-logarithm based hybrid cryptosystems. Here, x is
the bit length of group element representations and |m| is the length of symmetrically encrypted
plaintext. In encryption/decryption, e means one exponentiation, s — one symmetric-key IND-
CCA secure encryption/decryption of |m|-bit string (this may also consist of an IND-CPA secure
encryption/decryption together with a MAC on the ciphertext), t — one computation of a target
collusion-resistant hash function, u — one computation of a universal one-way hash function.
Non-cryptographic operations, e.g., of key-derivation functions, are not included to the computa-
tion cost. If the assumption is not well-established, a link to the paper(s) defining the assumption
is given.

Name Security Assumption Encrypt. Decrypt. |Ciphertext| |pk|
Hybrid
This paper CCA1 DDH 3e + s 2e + s 2x + |m| + |t| x
[HK07, Sect. 4.2] CCA2 DDH 4e + t + s 2e + t + s 2x + |m| + |t| 3x+hash
[KD04, GS04] CCA2 DDH 4e + t + s 2e + t + s 2x + |m| + |t| 2x+hash
[ABR01] CCA2 [ABR01] 2e + s 1e + s x + |m| + |t| x
[Sho00] CCA2 DDH 5e + s 3e + s 3x + |m| + |t| 4x+hash
Non-hybrid
[CS04] CCA2 DDH 5e + u 3e + u 4x 5x+hash
Lite [CS04] CCA1 DDH 4e 3e 4x 4x
[Dam91] CCA1 [Gjø06, Lip08] 3e 2e 3x 2x
[Elg85] CPA DDH 2e e 2x x

We propose a Damgård-based hybrid cryptosystem that we call “Hybrid Damgård”.
This scheme can also be seen as a simplification of the Kurosawa-Desmedt cryp-
tosystem [KD04]. We prove that Hybrid Damgård is CCA1-secure if the used sym-
metric cryptosystem is semantically secure, the used MAC is unforgeable, the used
key-derivation function is secure, and the underlying group is a DDH group. Hybrid
Damgård is currently the most efficient CCA1-secure hybrid cryptosystem that is based
on the DDH assumption. It is essentially as efficient as Damgård’s original CCA1-
secure cryptosystem, requiring the encrypter and the decrypter to additionally evaluate
only some secret-key or non-cryptographic operations. See Tbl. 1 for a comparison. In
addition, Hybrid Damgård is a hashless cryptosystem.

In the security proof, we use a standard game hopping technique, similar to the
one in [KD04, GS04]. Also our proof is only slightly more complex than that given
by Gjøsteen, the additional complexity is only due to use of additional symmetric
primitives.

Recent Work. Essentially the same cryptosystem was very recently discussed
in [DP08] and [KPSY08]. In [DP08], the authors proved CCA2-security of the Hy-
brid Damgård cryptosystem under a strong knowledge assumption (corresponding to
KA3 of [BP04]). One can extract a CCA1-security proof from it under a somewhat
weaker knowledge assumption (corresponding to KA2 of [BP04]). In a yet unpublished
eprint [KPSY08], the authors proved that the Hybrid Damgård is CCA2-secure under
the DDH assumption; however, the used hash function and symmetric cryptosystem
have to satisfy stronger assumptions. They also briefly mention that it is CCA1-secure
under the same assumptions we use.



20 Y. Desmedt, H. Lipmaa, and D.H. Phan

Notation. For a set A, let U(A) denote the uniform distribution on it.

2 Preliminaries

Let |B| < |A|. A function kdf : A → B is key derivation function, KDF, if the dis-
tributions kdf(U(A)) and U(B) are computationally indistinguishable. If |A| < |B|,
then KDF is a pseudorandom generator. Otherwise, KDF may be a non-cryptographic
function.

Decisional Diffie-Hellman Assumption
Definition 1. Let G be a group of order q with a generator g. A DDH distinguisher
Alice has success AdvDDHG,g(Alice), defined as∣∣∣∣∣ Pr[x, y ← ZZq : A(G, q, g, gx, gy, gxy) = 1]−

Pr[x, y ← ZZq, z ← ZZq \ {xy} : A(G, q, g, gx, gy, gz) = 1]

∣∣∣∣∣
in attacking DDH group G, where the probability is taken over the choice of ran-
dom variables and over the random coin tosses of Alice. We say that G is a (τ, ε)-
DDH group if AdvDDHG,g(Alice) ≤ ε for any τ -time adversary Alice and for any
generator g.

Usually, one takes z ← ZZq . The difference between Alice’s success in these two vari-
ants of the DDH game is clearly upper bounded by 1/q, see e.g. [CS04, Lem. 1]. We
later use a variation where also x is fixed (i.e., gx is a subindex of AdvDDH), but this
variation is equally powerful because of the random self-reducibility of DDH. More-
over, because of the random self-reducibility of DDH, the choice of g is not important.

We say that (g1, g2, g3, g4) is a DDH tuple if (g3, g4) = (g1, g2)r for some r ∈ ZZq.

Public-Key Cryptosystems. Let pub = (pub.gen, pub.enc, pub.dec) be a public-
key cryptosystem for a fixed security parameter λ. In particular, pub.gen(1λ)
returns a new secret/public key pair (sk, pk), pub.enc(pk;m; r) encrypts the mes-
sage m by using randomizer r, and pub.dec(sk;C) decrypts a ciphertext C such
that pub.dec(sk; pub.enc(pk;m; ·)) = m; the result of pub.dec may be a special
symbol ⊥.

Consider the next CCA2 game between the adversary Alice and the challenger:

Setup. The challenger runs pub.gen(1λ) to obtain a random instance of a secret and
public key pair (sk, pk). It gives the public key pk to Alice.

Query phase 1. Alice adaptively issues decryption queriesC. The challenger responds
with pub.dec(sk;C).

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger
picks a random bAlice ← {0, 1} and sets Ĉ ← pub.enc(pk; m̂bAlice

, r̂) for random
r̂. It gives Ĉ to Alice.

Query phase 2. Alice continues to issue decryption queries C as in phase 1, but
with the added constraint that C �= Ĉ . The challenger responds each time with
pub.dec(sk;C).



Hybrid Damgård Is CCA1-Secure 21

Guess. Alice outputs her guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice =
b′Alice.

Definition 2 (CPA/CCA1/CCA2 Security of Public-Key Cryptosystems). A CCA2
adversary Alice has success AdvCCA2pub(Alice) := |2 Pr[bAlice = b′Alice] − 1|
in attacking pub, where the probability is taken over the choice of bAlice and over
the random coin tosses of Alice. We say that pub is (τ, γ1, γ2, µ, ε)-CCA2-secure if
AdvCCA2pub(Alice) ≤ ε for any τ -time adversary Alice that makes up to γi queries
in phase i ∈ {1, 2}, with the total queried message length being up to µ bits. pub is
(τ, γ, µ, ε)-CCA1-secure if it is (τ, γ, 0, µ, ε)-CCA2-secure. pub is (τ, ε)-CPA-secure if
it is (τ, 0, 0, 0, ε)-CCA2-secure. The values AdvCPApub and AdvCCA1pub are defined
accordingly.

Damgård Cryptosystem [Dam91]

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,
and its randomly chosen generator g ∈ G.

Key setup pub.gen: Generate (α, β) ← ZZ2
q . Set sk ← (α, β) and pk ← (c ←

gα, d← gβ).
Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr, u2 ← cr, e← m · dr. The ciphertext is (u1, u2, e).
Decryption pub.dec: Given a ciphertext (u1, u2, e), do the following. If u2 �= uα

1 then
outputm← ⊥. Otherwise, computem← e/uβ

1 and returnm.

Descriptions of some other known public-key cryptosystems are given in Appendix.

Symmetric Cryptosystems. Let sym = (sym.gen, sym.enc, sym.dec) be a symmetric
cryptosystem for a fixed security parameter λ. In particular, sym.gen(1λ) returns a new
secret key sk, sym.enc(sk;m; r) encrypts the message m by using randomizer r, and
sym.dec(sk;C) decrypts a ciphertextC such that sym.dec(sk; sym.enc(sk;m; r)) = m.

CPA/CCA1/CCA2-security of symmetric cryptosystems is defined similarly as in the
case of public-key cryptosystems. Consider the next CCA2 game between the adversary
Alice and the challenger:

Setup. The challenger runs pub.gen(1λ) to obtain a random instance of a secret key sk
Query phase 1. Alice adaptively issues encryption queries m, where the challenger

responds with sym.enc(sk;m, r) for random r, and decryption queries C, where
the challenger responds with sym.dec(sk;C).

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger
picks a random bAlice ← {0, 1} and sets Ĉ ← sym.enc(sk; m̂bAlice

, r̂) for random r̂.
It gives Ĉ to Alice.

Query phase 2. Alice continues to issue encryption queriesm and decryption queries
C as in phase 1, but with the added constraint that C �= Ĉ. The challenger as in
phase 1.

Guess. Alice outputs her guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice =
b′Alice.



22 Y. Desmedt, H. Lipmaa, and D.H. Phan

Definition 3 (CPA/CCA1/CCA2 Security of Symmetric Cryptosystems). A CCA2
adversary Alice has success AdvCCA2sym(Alice) := |2 Pr[bAlice = b′Alice] − 1|
in attacking sym, where the probability is taken over the choice of bAlice and over
the random coin tosses of Alice. We say that pub is (τ, γ1, γ2, µ, ε)-CCA2-secure if
AdvCCA2pub(Alice) ≤ ε for any τ -time adversary Alice that makes up to γi queries
in phase i ∈ {1, 2}, with the total queried message length being up to µ bits. sym is
(τ, γ, µ, ε)-CCA1-secure if it is (τ, γ, 0, µ, ε)-CCA2-secure. sym is (τ, ε)-CPA-secure
if it is (τ, 0, 0, 0, ε)-CCA2-secure. The values AdvCPAsym and AdvCCA1sym are defined
accordingly.

MAC. A MAC mac = (mac.tag,mac.ver), on key κ and message e produces a
tag t = mac.tag(κ; e). A MAC is unforgeable if for random κ, after obtaining
t′ ← mac.tag(κ; e′) for (at most one) adversarially chosen e′, it is hard to compute
a forgery, i.e., a pair (e, t) such that e �= e′ but mac.ver(κ; e, t) = �.

A standard way of constructing a CCA2-secure symmetric cryptosystem is to encrypt
a message m by using a CPA-secure cryptosystem, e ← sym.enc(K;m, r) and then
returning e together with a tag t ← mac.tag(κ; e). Here, (K,κ) is a pair of independent
random keys.

3 Hybrid Damgård Cryptosystem

We now propose a new cryptosystem, Hybrid Damgård, an hybrid variant of the
Damgård cryptosystem that uses some ideas from the Kurosawa-Desmedt cryptosys-
tem as exposed by [GS04].

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order
q, and its two randomly chosen different generators g1, g2 ∈ G. Choose a CPA-
secure symmetric cryptosystem sym = (sym.gen, sym.enc, sym.dec), an unforge-
able MAC mac = (mac.tag,mac.ver), and a KDF kdf from G to the set of keys of
(sym,mac).

Key setup pub.gen: Generate (α1, α2) ← ZZ2
q . Set sk ← (α1, α2) and pk ← (c ←

gα1
1 g

α2
2 ).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, generate
r ← ZZq , and randomizer ρ for sym, and then

u1 ← gr
1 , u2 ← gr

2 , (K,κ) ← kdf(cr) ,
e← sym.enc(K;m, ρ) , t ← mac.tag(κ; e) .

The ciphertext is (u1, u2, e, t).
Decryption pub.dec: Given a ciphertext (u1, u2, e, t), do the following. Compute

(K,κ) ← kdf(uα1
1 u

α2
2 ). If mac.ver(κ; e, t) = ⊥ then return m ← ⊥ else return

m← sym.dec(K; e).

Theorem 1. Fix a group G, a symmetric cryptosystem sym =
(sym.gen, sym.enc, sym.dec), a MAC mac = (mac.tag,mac.ver), and a hash
function kdf from G to the set of keys for (sym,mac). Then the Hybrid Damgård
cryptosystem pub is CCA1-secure if (1) the DDH assumption holds, (2) kdf is a KDF,
(3) sym is CPA-secure, and (4) mac is unforgeable.



Hybrid Damgård Is CCA1-Secure 23

Proof. Use the next sequence of game hops. Assume that Alice is a (τ, γ, µ, ε) CCA1-
adversary for pub. In every game Gamei we modify the CCA1 game so that thereAlice
has advantage Pr[Xi], where for every i, |Pr[Xi+1]−Pr[Xi]| is negligible. Moreover,
|Pr[Xi+1]−Pr[Xi]| is estimated by defining an eventFi+1 such that eventsXi∧¬Fi+1
iff Xi+1 ∧ ¬Fi+1. Then clearly |Pr[Xi+1] − Pr[Xi]| ≤ Pr[Fi+1] [CS98]. The full
proof is slightly more complicated since the games build up a tree instead of a chain.
All games are fairly standard. Details follow.

Game0

This is the original CCA1 game.Alice gets a random public key pk = (c), makes a num-
ber of decryption queries (u1, u2, e, t), receives a challenge ciphertext (û1, û2, ê, t̂),
makes some more decryption queries (u1, u2, e, t), and then makes a guess. In this
game, Alice has success Pr[X0] = ε. To simplify further analysis, we assume that the
challenger has created the values (û1, û2, K̂, κ̂) before the phase-1 queries.

Game1

Here we redefine the internal way of computing the key during the decryption queries
and the challenge ciphertext creation. Namely, we let (K,κ) ← kdf(uα1

1 u
α2
2 ). This does

not change the ciphertexts, and thus also in Game1, Alice has success Pr[X1] = ε.

Game2

In this game, the challenge ciphertext is created by choosing (û1, û2) ← (gr̂1
1 , g

r̂2
2 ) for

random r̂1 �= r̂2. Assume that in Game2, Alice has success probability Pr[X2]. We
now construct a DDH adversaryBob with advantage related to |Pr[X1]−Pr[X2]|. Bob
gets (g1, q, g2) as an input, where g1 generates a group G of order q and a g2 ← G\{g1}.
Bob and Alice choose appropriate (sym,mac, kdf). He then runs Alice step-by-step.

– Bob asks for his challenge (û1, û2) ∈ G2. He generates random α1, α2 ← ZZq ,
sets sk ← (α1, α2) and pk ← (c← gα1

1 g
α2
2 ). He sends pk to Alice.

– When Alice makes a phase-1 decryption query with a purported ciphertext
(u1, u2, e, t), Bob returns m according to the decryption formula: (K,κ) ←
kdf(uα1

1 u
α2
2 ). If mac.ver(κ; e, t) = ⊥ thenm← ⊥ else m← sym.dec(K; e).

– When Alice submits her message pair (m0,m1), Bob sets bAlice ← {0, 1},
and sends (û1, û2, ê, t̂) as the challenge ciphertext to Alice, where ê ←
sym.enc(K̂;mbAlice

, ρ̂), for uniform randomizer ρ̂, and t̂ ← mac.tag(κ̂; ê) for
(K̂, κ̂) ← kdf(ûα1

1 û
α2
2 ).

– Finally, Alice replies with a guess b′Alice. Bob outputs b′Bob ← 1 if b′Alice = bAlice,
and b′Bob ← 2 otherwise.

Let bBob = 1 if (g1, g2, û1, û2) is a random DDH tuple, and bBob = 2 if it is a random
non-DDH tuple, and assume that Pr[bBob = 1] = 1/2. In particular if bBob = 2 then
û1 ← gr̂1

1 , û2 ← gr̂2
2 for random r̂1 �= r̂2.

If bBob = 1 then all steps are emulated perfectly for Game1. Thus, Pr[b′Alice =
bAlice|bBob = 1] = Pr[X1]. If bBob = 2 then all steps are emulated perfectly for Game2
and thus Pr[b′Alice = bAlice|bBob = 2] = Pr[X2].



24 Y. Desmedt, H. Lipmaa, and D.H. Phan

Thus, Pr[b′Bob = bBob] = 1
2 Pr[b′Bob = 1|bBob = 1] + 1

2 Pr[b′Bob = 2|bBob =
2] = 1

2 Pr[b′Alice = bAlice|bBob = 1] + 1
2 − 1

2 Pr[b′Alice = bAlice|bBob = 2] =
1
2 + 1

2 (Pr[X1] − Pr[X2]), and |Pr[X1] − Pr[X2]| = |2 Pr[b′Bob = bBob] − 1| is the
advantage of Bob distinguishing random DDH tuples and random non-DDH tuples of
form

{
(g1, g2, û1, û2) : (g1, g2, û1) ← G3, û2 ← G \ {û1}

}
. Thus,

|Pr[X1] − Pr[X2]| ≤ εddh ,

where εddh is the probability of breaking the DDH assumption, given resources compa-
rable to the resources of the adversary.

Game3

First, recall that (û1, û2) is computed before the phase-1. Now, we let the decryption or-
acle to reject all ciphertexts (u1, u2) such that (u1, u2) �= (û1, û2) and (g1, g2, u1, u2)
is not a DDH tuple. Here, F3 is the event that such a ciphertext would have been ac-
cepted in Game2. Clearly, Pr[F3] ≤ γ1 · Pr[F ′

3], where F ′
3 is the event that such a

ciphertext would have been accepted in a randomly chosen phase-1 query of Game2,
and γ1 is again the number of queries in phase-1. We defer the computation of Pr[F ′

3]
to later games where it is substantially easier to do.

Complete description of Game3 is given in Fig. 1 (here we can explicitly use the
value of w since we are done with a DDH reduction that had to compute w; the up-
coming DDH reduction in Game4 computes something different). It also points out
differences between Game3 and Game4.

Game4

In this game we change six lines as specified in Fig. 1. Let Alice be an adversary in
Game4 again. Because of the change on line D05, other changes are only decorative
and do not changeAlice’s view. Thus, let F ′

4 be the event that during a randomly chosen
phase-1 query of Game3, the line D08 is executed.

Consider a concrete phase-1 decryption query. Then

logg1
c =α1 + wα2 , (1)

logg1
v =r1α1 + r2wα2 . (2)

Equations (1) and (2) are linearly independent and thus v can take on any value from
G, and thus is uniformly distributed over G. Thus,

Pr[F ′
4] = Pr[F ′

3] .

Now we do a fork in the hopping. Games Game5 and Game6 bound Pr[X4]. Game
Game′5 bounds Pr[F ′

4].

Game5

Game5 is the same as Game4, except that here we compute (K̂, κ̂) ←
“random keys”. Because in Game4, v̂ is completely random, and is not used anywhere,
except once as an input to kdf, then it is easy to see that

|Pr[X5] − Pr[X4]| ≤ εkdf ,



Hybrid Damgård Is CCA1-Secure 25

Setup. Fix G, q, two random different generators g1, g2 ∈ G where g2 = gw
1 for a random

w ← ZZq \ {1}, sym, mac and kdf. The challenger does the following.
S01 α1, α2 ← ZZq ��������

α ← ZZq

S02 sk ← (α1, α2) ������
sk ← α

S03 pk ← (c ← gα1
1 gα2

2 )
�������������
pk ← (c ← gα

1 )
S04 Send the public key pk to Alice
S05 r̂1 ← ZZq, r̂2 ← ZZq \ {r̂1}
S06 û1 ← gr̂1

1 , û2 ← gr̂2
2

S07 v̂ ← ûα1
1 ûα2

2 ������
v̂ ← G

S08 (K̂, κ̂) ← kdf(v̂)
Query phase 1. Alice adaptively issues decryption queries (u1, u2, e, t). The challenger does

the following.
D01 If (u1, u2) = (û1, û2) then
D02 If mac.ver(κ̂; e, t) = ⊥ then return ⊥
D03 Return sym.dec(K̂; e)
D04 else if uw

1 �= u2 then
D05 v ← uα1

1 uα2
2 ������

v ← G
D06 (K, κ) ← kdf(v)
D07 If mac.ver(κ; e, t) = ⊥ then return ⊥
D08 Return ⊥. // Event F3: Difference between Game2/Game3

D09 else
D10 v ← uα1

1 uα2
2 �������

v ← uα
1

D11 (K, κ) ← kdf(v)
D12 If mac.ver(κ; e, t) = ⊥ then return ⊥
D13 Return sym.dec(K; e)

Challenge phase. Alice outputs two (equal length) messages m̂0, m̂1. The challenger picks a
random bAlice ← {0, 1}. The challenger sets ê ← sym.enc(K; m̂bAlice

, ρ̂), for uniform
randomizer ρ̂, and t̂ ← mac.tag(κ̂; ê). It gives Ĉ ← (û1, û2, ê, t̂) to Alice.

Guess. Alice outputs its guess b′Alice ∈ {0, 1} for bAlice and wins the game if bAlice = b′Alice.

Fig. 1. Games Game3 and Game4. Two games differ only in a few lines. In those lines, the
part that is only executed in Game3 has been underlined, while the part that is only executed in
Game4 has been underwaved.

where εkdf is the probability of distinguishing the output of kdf from completely random
keys, using resources similar to the resources of the given adversary.

Game6

Game6 is the same as Game5, except that we change the line D03 to “return ⊥”. Let
F6 be the event that line D03 is ever executed in Game6 in any decryption request.
If F6 occurs then Alice has broken the MAC keyed by κ̂ (which in Game6 is truly
random). Thus, Pr[F6] ≤ γεmac, where εmac is the advantage with which one can break
the MAC using resources similar to those of Alice. Then, clearly,

|Pr[X6]− Pr[X5]| ≤ Pr[F6] ≤ γεmac .



26 Y. Desmedt, H. Lipmaa, and D.H. Phan

Observe that K̂ is completely random and thus used for no other purpose than to encrypt
mbAlice

. It is thus easy to see that

|Pr[X6]− 1/2| ≤ εenc ,

where εenc is the probability of breaking the semantic security of sym, using resources
comparable to the resources of the adversary.

Game5′

Game5′ is the same as Game4, except that we change the line D06 to (K,κ) ←
“random keys”. Let F ′

5′ be the event that line D08 is executed in a randomly chosen
decryption query of phase-1 in Game5′ . Because in Game5′ , in line D05, the value
of v is completely random and not used anywhere, except once as an input to kdf, then
it is easy to see that

|Pr[F ′
5′ ] − Pr[F ′

4]| ≤ ε′kdf ,

where ε′kdf is the advantage with which one can distinguish the output of kdf from a
random key pair, using resources similar to those of the given adversary.

Now, in Game5′ , the key κ used in line D07 is completely random. From this, it
easily follows that

Pr[F ′
5′ ] ≤ ε′mac ,

where ε′kdf is the probability of breaking mac, using resources similar to those of the
given adversary.

Completing The Proof

We have

Pr[F3] ≤ γ1 Pr[F ′
3] = γ1 Pr[F ′

4] ≤ γ1(Pr[F ′
5′ ] + ε′kdf) ≤ γ1(ε′mac + ε′kdf) .

Finally,

|Pr[X0] − 1/2| ≤ εddh + εkdf + εenc + γ1(εmac + ε′mac + ε′kdf) . (3)

��

4 Why We Cannot Prove CCA2-Security

We will now briefly show why this proof technique cannot show that Hybrid Damgård
is CCA2-secure in the standard model and “standard” assumptions from KDF, MAC
and secret-key cryptosystem. Consider any phase-2 decryption query in Game4. Let
v̂ := ûα1

1 û
α2
2 . Then from Alice’s point of view, during a query of phase-2, (α1, α2) is a

random point satisfying two linearly independent equations, Eq. (1) and the equation

logg1
v̂ = r̂1α1 + r̂2wα2 . (4)



Hybrid Damgård Is CCA1-Secure 27

During an arbitrary query of phase-2, suppose that Alice queries an invalid ciphertext
(u1, u2, e, t) to the decryption oracle where u1 = gr1

1 and u2 = gr2
2 with r1 �= r2. Thus

also Eq. (2) holds. Now, Eq. (1), (2) and (4) are not linearly independent and thus we
cannot claim as in the previous papers that the value v is uniform and random.

More precisely, to distinguish v from random, Alice participates in the next game.
She first sees tuple

(g1, g2, c← gα1
1 g

α2
2 ; û1 ← gr̂1

1 , û2 ← gr̂2
2 , v̂ ← gr̂1α1

1 gr̂2α2
2 )

for randomly chosen α1, α2, r̂1 �= r̂2. Second, she sends to challenger a tuple

u1 ← gr1
1 , u2 ← gr2

2 ,

for r1 �= r2. Third, she gets back a value v such that either v = uα1
1 u

α2
2 = gr1α1

1 gr2α2
2

(if bAlice = 1), or v ← G (if bAlice = 0).
Clearly, we can assume thatAlice knows the values r1, r2. Note that her task is equiv-

alent to deciding whether v/cr1 = g
(r2−r1)α2
2 = ur2−r1

2 or whether v = cr1ur2−r1
2 ,

which she can do trivially. Therefore, v is not pseudorandom.
Recently, [KPSY08] have given a CCA2-security proof of the Hybrid Damgård un-

der a stronger assumption on the hash function.

Acknowledgments. Part of this work was done while the second and the third author
were working at University College London. Yvo Desmedt is the BT Chair of Infor-
mation Security and funded by EPSRC EP/C538285/1. Helger Lipmaa was supported
by Estonian Science Foundation, grant #6848, European Union through the European
Regional Development Fund and the 6th Framework Programme project AEOLUS
(FP6-IST-15964).

References

[ABR01] Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
And An Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 143–158. Springer, Heidelberg (2001)

[BP04] Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without
Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–
62. Springer, Heidelberg (2004)

[CS98] Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[CS04] Cramer, R., Shoup, V.: Design And Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33(1), 167–226 (2004)

[Dam91] Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Cipher-
text Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

[DP08] Desmedt, Y., Phan, D.H.: A CCA Secure Hybrid Damgård’s ElGamal Encryption.
In: Bao, F., Chen, K. (eds.) ProvSec 2008. LNCS, vol. 5324. Springer, Heidelberg
(2008)



28 Y. Desmedt, H. Lipmaa, and D.H. Phan

[Elg85] Elgamal, T.: A Public Key Cryptosystem And A Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

[Gjø06] Gjøsteen, K.: A New Security Proof for Damgård’s ElGamal. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006)

[GS04] Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa And
Desmedt. Technical Report 2004/194, International Association for Cryptologic Re-
search (August 10, 2004) (last revision May 18, 2005),
http://eprint.iacr.org/2004/194

[HK07] Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

[KD04] Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

[KPSY08] Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A New Randomness Extraction
Paradigm for Hybrid Encryption. Technical Report 2008/304, International Asso-
ciation for Cryptologic Research (October 2008),
http://eprint.iacr.org/2008/304

[Lip08] Lipmaa, H.: On CCA1-Security of Elgamal And Damgård Cryptosystems. Techni-
cal Report 2008/234, International Association for Cryptologic Research (October
2008), http://eprint.iacr.org/2008/234

[Sho00] Shoup, V.: Using Hash Functions as A Hedge against Chosen Ciphertext Attack.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

A Some Known Public-Key Cryptosystems

Cramer-Shoup Cryptosystem from [CS98]

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,
and a universal one-way family UOWHF of hash functions.

Key Setup pub.gen: Let (g1, g2) ∈ G2 be two random generators, let
(α1, α2, β1, β2, γ) ← ZZ5

q . Compute c ← gα1
1 g

α2
2 , d ← gβ1

1 g
β2
2 , h ← gγ

1 .
Choose uowhf ← UOWHF . The public key is pk ← (g1, g2, c, d, h, uowhf), the
private key is sk ← (α1, α2, β1, β2, γ).

Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr
1 , u2 ← gr

2 , e ← m · hr, v ← (cduowhf(u1,u2,e))r. The ciphertext
is (u1, u2, e, v).

Decryption pub.dec: Given a ciphertext (u1, u2, e, v), do the following. Set k ←
uowhf(u1, u2, e). If uα1+β1k

1 uα1+β1k
2 �= v then output m ← ⊥. Otherwise, com-

putem← e/uγ
1 and returnm.

Cramer-Shoup Lite Cryptosystem from [CS98, Sect. 5.4]

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q.
Key Setup pub.gen: Let (g1, g2) ∈ G2 be two random generators, let (α1, α2, γ) ←

ZZ3
q . Compute c ← gα1

1 g
α2
2 , h ← gγ

1 . The public key is pk ← (g1, g2, c, h), the
private key is sk ← (α1, α2, γ).

http://eprint.iacr.org/2004/194
http://eprint.iacr.org/2008/304
http://eprint.iacr.org/2008/234


Hybrid Damgård Is CCA1-Secure 29

Encryption pub.enc: Given a message m ∈ G, do the following. First, set r ← ZZq

and then u1 ← gr
1 , u2 ← gr

2, e← m · hr, v ← cr. The ciphertext is (u1, u2, e, v).
Decryption pub.dec: Given a ciphertext (u1, u2, e, v), do the following. If uα1

1 u
α1
2 �=

v then outputm← ⊥. Otherwise, computem← e/uγ
1 and returnm.

Shoup Hybrid Cryptosystem from [Sho00]
Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order q,

and a universal one-way family UOWHF of hash functions.
Key Setup pub.gen: Generate a random generator g1 ← G, and (w,α, β, γ) ← ZZ4

q .

Compute g2 ← gw
1 , c ← gα

1 , d ← gβ
1 , h ← gγ

1 . Choose uowhf ← UOWHF . The
public key is pk ← (g1, g2, c, d, h, uowhf), the private key is sk ← (w,α, β, γ).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set r ←
ZZq and then u1 ← gr

1 , u2 ← gr
2, (K,κ) ← kdf(hr), e ← sym.enc(K;m, ρ) for

uniform randomizer ρ, t ← mac.tag(κ; e), v ← (cduowhf(u1,u2))r. The ciphertext
is (u1, u2, v, e, t).

Decryption pub.dec: Given a ciphertext (u1, u2, v, e, t), do the following. Set k ←
uowhf(u1, u2), (K,κ) ← kdf(uγ

1 ). If mac.ver(κ; e, t) = ⊥ or uα+βk
1 �= v or

u2 �= uw
1 then output m ← ⊥. Otherwise, compute m ← sym.dec(K; e) and

returnm.

DHIES Cryptosystem from [ABR01]. The DHIES cryptosystem is very simple but
relies on a nonstandard assumption that was called “oracle-DDH” in [ABR01]. Briefly,
it is assumed that one cannot distinguish tuples (gu, gv, h(guv)) and (gu, gv, r) for ran-
dom group elements u, v← ZZq and a random string r, even if given access to an oracle
that on any input x �= gu computes h(xv).

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of or-
der q, and its randomly chosen generator g ∈ G. Choose a CPA-secure sym-
metric cryptosystem sym = (sym.gen, sym.enc, sym.dec), a secure MAC mac =
(mac.tag,mac.ver), and a hash function family H from G2 to the set of keys of
sym and mac.

Key Setup pub.gen: Choose a hash function h ← H. Generate α← ZZq. Set sk ← α
and pk ← (c← gα, h).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set
r ← ZZq and then u ← gr, (K,κ) ← h(cr), e ← sym.enc(K;m, ρ) for uni-
form randomizer ρ, t ← mac.tag(κ; e). The ciphertext is (u, e, t).

Decryption pub.dec: Given a ciphertext (u, e, t), do the following. Compute (K,κ) ←
h(uα). If mac.ver(κ; e, t) = ⊥ then return m ← ⊥ else return m ←
sym.dec(K; e).

Kurosawa-Desmedt Hybrid Cryptosystem from [KD04]. We give a description
due to [GS04] that differs from the original description from [KD04] in two as-
pects. It replaces the original (information-theoretically) rejection-secure CCA2-secure
sym of [KD04] with a CPA-secure sym and a (computationally) secure mac =
(mac.tag,mac.ver). It also allows to use a computationally secure KDF.



30 Y. Desmedt, H. Lipmaa, and D.H. Phan

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of or-
der q, and its two randomly chosen different generators g1, g2 ∈ G. Choose a
CPA-secure symmetric cryptosystem sym = (sym.gen, sym.enc, sym.dec), a se-
cure MAC mac = (mac.tag,mac.ver), a KDF kdf from G to the set of keys of
(sym,mac), and a target-collision-resistant function family T CR : G2 → ZZq .

Key Setup pub.gen: Choose a hash function tcr ← T CR. Generate
(α1, α2, β1, β2) ← ZZ4

q . Set sk ← (α1, α2, β1, β2) and pk ← (c ← gα1
1 g

α2
2 , d ←

gβ1
1 g

β2
2 , tcr).

Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set
r ← ZZq and then u1 ← gr

1, u2 ← gr
2, (K,κ) ← kdf

(
(cdtcr(u1,u2))r

)
,

e ← sym.enc(K;m, ρ) for uniform randomizer ρ, t ← mac.tag(κ; e). The ci-
phertext is (u1, u2, e, t).

Decryption pub.dec: Given a ciphertext (u1, u2, e, t), do the following. Compute k ←
tcr(u1, u2), (K,κ) ← kdf(uα1+β1k

1 uα2+β2k
2 ). If mac.ver(κ; e, t) = ⊥ then return

m← ⊥ else returnm← sym.dec(K; e).

Hofheinz-Kiltz DDH-Based Cryptosystem. In [HK07, Sect. 4.2], the authors pro-
posed the next DDH-based cryptosystem.

Setup: On input the security parameter λ, return a λ-bit prime q, a group G of order
q, and its randomly chosen generator g ∈ G. Choose a CCA2-secure symmetric
cryptosystem sym = (sym.gen, sym.enc, sym.dec), a KDF kdf from G to the set of
keys of (sym,mac), and a target-collision-resistant function family T CR : G →
ZZq .

Key Setup pub.gen: Choose a hash function tcr ← T CR. Generate (α1, α2, β) ←
ZZ3

q . Set sk ← (α1, α2, β) and pk ← (c← gα1 , d← gα2 , h← gβ, tcr).
Encryption pub.enc: Given a message m ∈ {0, 1}∗, do the following. First, set r ←

ZZq and then u1 ← gr, u2 ← (ctcr(u1) ·d)r,K ← kdf(hr), e← sym.enc(K;m, ρ)
for uniform randomizer ρ. The ciphertext is (u1, u2, e).

Decryption pub.dec: Given a ciphertext (u1, u2, e), do the following. If u1 �∈ G

or uα1·tcr(u1)+α2
1 �= u2 then return ⊥. Compute K ← kdf(uβ

1 ). Return m ←
sym.dec(K; e), possiblym = ⊥.



Efficient Dynamic Broadcast Encryption
and Its Extension to

Authenticated Dynamic Broadcast Encryption

Masafumi Kusakawa, Harunaga Hiwatari, Tomoyuki Asano,
and Seiichi Matsuda

Sony Corporation. 5-1-12 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001, Japan
{Masafumi.Kusakawa,Harunaga.Hiwatari,Tomoyuki.Asano,

SeiichiA.Matsuda}@jp.sony.com

Abstract. We propose two public-key broadcast encryption schemes.
Our Scheme1 is a variant of the dynamic broadcast encryption scheme
proposed by Delerablée et al. [9]. The computational cost and the en-
cryption (public) key size are more efficient than the original scheme.
We observe that by using a decryption key in the original scheme, we
can encrypt a message more efficiently without a part of an encryp-
tion key. In order to let any user receive this benefit, we introduce a
“dummy key” which is similar to a decryption key. Scheme2 is an exten-
sion of Scheme1 to achieve an authenticated dynamic broadcast encryp-
tion scheme that enables receivers to verify the producer of broadcasted
content. In Scheme2, we adopt the signature scheme proposed by Barreto
et al. [3]. To our knowledge, Scheme2 is the first scheme that achieves
provable security for broadcast encryption and signature with common
parameters and keys.

1 Introduction

Background. Broadcast encryption (BE), introduced by Berkovits [4] and Fiat
and Naor [11] independently, is a technology which allows a sender to broadcast a
content efficiently and securely to unrevoked users. In a BE system, an authority
generates decryption keys for each user, and distributes them beforehand via
secure channel. The sender encrypts a content with a session key and broadcasts
it with a header containing information that allows unrevoked users to decrypt
the session key. An unrevoked user decrypts the header with her/his decryption
key and the ciphertext with the obtained session key.

BE schemes can be roughly classified into two types. One is symmetric-key
setting [1,2,11,16] in which the sender and each user need to share secret keys in
advance. The other is public-key setting [7,8,9,10,17,19] in which the sender can
broadcast a content by using only public information. We call this type “public-
key BE”. The schemes classified into the former have a restriction that only a
trusted party such as an authority can be a sender, however, the computational
cost is small. These schemes are suitable for a content delivery system using

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 31–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



32 M. Kusakawa et al.

physical media such as DVDs. On the other hand, public-key BE schemes have
a disadvantage that the computational cost is large, however any entity can be
a sender. Therefore, they are considered to be suitable for the situation where
it is difficult for a sender and receivers to share secret keys in advance. In this
paper, we focus on public-key BE schemes.

For evaluation of these schemes, there are important criteria: encryption key
(ek) size, decryption key (dk) size, header (hdr) size, encryption cost, and decryp-
tion cost. The ek and dk size are the size of information that each device needs
to possess in the memory for encryption and decryption, respectively. The hdr
size affects the size of physical media or bandwidth of network. The encryption
and decryption cost are the computational cost for each device to compute a
header and session key, respectively.

Related Work. Boneh, Gentry, and Waters proposed a bilinear map based scheme
(BGW05) [7]. This is the first scheme to achieve constant hdr size regardless of
the number of revoked users and fully collusion resistant that means the scheme
is secure against a collusion of all users. In this scheme, ek, dk, and hdr size
for total users n are O(n), O(n),1 and O(1), respectively. The encryption and
decryption cost depend on the number of unrevoked users.

Delerablée, Paillier, and Pointcheval proposed another fully collusion resistant
scheme (DPP07) [9], where users can join the system after the setup phase. They
call it a dynamic broadcast encryption scheme. Its ek, dk, and hdr size are O(n),
O(1), and O(r), and the encryption and decryption cost are O(r2) and O(r),
respectively, where r denotes the number of revoked users.

Sakai and Furukawa proposed an identity based broadcast encryption scheme
(SF07) [19], where a sender does not have to know uniquely assigned values
for each user, while ek, dk, and hdr size are the same as BGW05. Delerablée
proposed a similar scheme (D07) [8] in which ek, dk, and hdr size are respectively
O(m), O(m), and O(�n/m�) where m is the system parameter.

In public-key BE, any sender can broadcast a content without being identified.
Let us consider the case where a content is software or firmware used to update
some devices. In such a case, it is important for recipients to verify that the
content is generated by a specified entity and unchanged in transit, in order to
avoid malicious software which may act harmfully to the recipient or device.

We can use an independent signature scheme to assure the integrity and the
authenticity of contents. However, it requires the user devices to prepare another
memory space for the verification key and parameters. Hence, it is preferred that
a scheme realizes both functions of a public-key BE and a signature with common
parameters and keys. Kanazawa, Ohkawa, Doi, Okamoto, and Okamoto proposed
a scheme (KODOO07) which realizes these properties with common parameters
and keys [13]. In this scheme, they applied Schnorr’s signature scheme [20] to
BGW05 by adding n elements to the encryption key. However, its security anal-
ysis is heuristic and insufficient.

1 In BGW05, since each receiver needs to possess a part of the encryption key for
decryption, dk size becomes O(n).



Efficient Dynamic BE and Its Extension 33

Table 1. Comparison of public-key BE schemes for ek, dk, and hdr size

ek size dk size (G1, G2) hdr size authenticated
G1, G2 GT Z∗

p secret publica G1, G2, Z
∗
p BE?

BGW05 (Special case) 2n + 1 0 0 1 2n 2 no
BGW05 (General case) 2

√
n 0 0 1 2

√
n − 2 2 no

KODOO07 [13]b 3n + 1 0 0 1 3n 4 yes
DPP07 [9] n + 2 n + 1 n 1 2 2r + 2 no
SF07 [19] 2n + 2 0 0 1 n 2 no
D07 (m = n) [8] n + 2 1 0 1 n 2 no
Scheme1 (Ours) n + 4 0 n + 1 1 2 2r + 2 no
Scheme2 (Ours) n + 2 0 n 1 2 2r + 5 yes

a “Public” means the necessary information for decryption although it does not have
to be kept in a secret manner.

b The security proof of this scheme is not sufficient.

Note that Mu, Susilo, Lin, and Ruan proposed an authenticated broadcast
encryption scheme [15] and Li, Xin, and Hu proposed a scheme which they
called “Identity-based broadcast signcryption”[14]. In these schemes however,
any sender needs to share a secret key with each user. Therefore, we do not
consider that they are included in public-key BE schemes.

Our Contribution. In this paper, we improve DPP07 and propose two schemes.
Our Scheme1 reduces ek size and encryption cost, and Scheme2 is an authen-
ticated public-key BE scheme with common parameters and keys based on
Scheme1. We show the comparison of previously proposed public-key BE schemes
and ours in Table 1.

Let e : G1 × G2 → GT be a bilinear map. The bit size of elements in GT

is usually larger than G1 and G2. In DPP07, the published encryption key ek
contains n elements over GT . On the other hand, Scheme1 uses the sender’s
decryption key instead of these elements and hence we can remove them. It
also reduces the computational cost over GT from O(r2) to O(1). However, this
applies only senders who have a decryption key. For senders who do not have
a decryption key, we publish a dummy decryption key. It enables an arbitrary
entity to take the above benefit. Consequently, Scheme1 reduces ek size and
encryption cost compared with DPP07.

In Scheme2, we apply the signature scheme proposed by Barreto, Libert, Mc-
Cullagh, and Quisquater [3] to Scheme1. It realizes the authenticated public-key
BE scheme with common parameters and keys for both functions of confiden-
tiality and authenticity.

The message confidentiality of our schemes is based on the general Diffie-
Hellman exponent (GDDHE) problem [6] introduced by Boneh, Boyen, and Goh,
in the generic model. The signature unforgeability of Scheme2 is proved by using
(t + 1, n)-strong Diffie-Hellman (SDH) problem, which is a generalization of q-
SDH problem [5]. We consider that Scheme2 is the first scheme that achieves
provably secure authenticated dynamic broadcast encryption.



34 M. Kusakawa et al.

2 Efficient Dynamic Broadcast Encryption (DBE)

In this section, we briefly review properties of bilinear maps at first, then we
propose an efficient dynamic broadcast encryption scheme (Scheme1), where we
adapt two modifications to DPP07. As a result, we can reduce encryption cost
and eliminate n elements of the encryption key (ek). The first trick changes
the way to compute an intermediate value over GT which is used to derive a
session key in encryption algorithm. In DPP07, it is computed by using Aggregate
algorithm [9] over GT using Vi ∈ GT (i = 1, . . . , n) in ek. In Scheme1 however,
it is computed by using the decryption key of the sender. It makes the Vis
unnecessary in Scheme1, and also makes computational cost over GT constant
regardless of the number of revoked users.

Since the above modification requires a decryption key for encryption, only
senders possessing a decryption key can obtain the benefit. For senders without
possessing a decryption key, we introduce the second modification by publishing
a dummy decryption key (we call it merely “dummy key”). This enables anyone
to compute the intermediate value over GT without Vis, and consequently, we
can remove them from the encryption key.

2.1 Bilinear Maps

Let G1,G2, and GT be cyclic groups of prime order p, we follow the notation
of bilinear map [7,9]. Here, G1 and G2 are additive groups, and GT is a mul-
tiplicative group. Let G ∈ G1 and H ∈ G2 be the generators. For all P ∈ G1
and Q ∈ G2, a bilinear map is a map e : G1 × G2 → GT with the following
properties, (1) BilinearityFFor all a, b ∈ Zp, we have e(aP, bQ) = e(P,Q)ab and
(2) Non-degeneracyFe(G,H) �= 1.

2.2 Definition of Dynamic Broadcast Encryption

We follow the definition of DBE given by Delerablée et al. [9]. There is a key
generation center (KGC) as an authority. It creates and publishes a system
parameter params and an initial encryption key ek using Setup algorithm. It keeps
mk secret, and publishes params and ek. Note that all of the following algorithms
use params and we omit the notation about it for simplicity. The KGC executes
Join algorithm when a user i joins the system. It sends a decryption key dki

to the user via secure channel and replaces ek by the updated one. In order to
broadcast a content M , a sender encrypts M with the session key K obtained
with Encrypt algorithem to generate a ciphertext C and broadcasts (hdr, C). To
obtainM , an unrevoked user j decrypts C with K derived by Decrypt alogrithm.

Setup(λ): Takes as input a security parameter λ, this algorithm outputs a mas-
ter key mk, a set of system parameters params, and an encryption key ek.

Join(i, ek,mk): Takes as input a user counter i, the encryption key ek, and the
master key mk. This algorithm outputs a decryption key dki for the user i
and an updated encryption key ek.



Efficient Dynamic BE and Its Extension 35

Encrypt(ek,R): Takes as input the encryption key ek and a set of uniquely
assigned values for revoked users R = {uR1 , . . . , uRr} where r is the number
of revoked users. This algorithm outputs a header hdr and a session key
K ∈ KS, where KS denotes the space of session keys.

Decrypt(hdr, dkj): Takes as input a header hdr and the decryption key dkj . This
algorithm outputs the session key K if the user j is not revoked, otherwise
a symbol ⊥.

2.3 Scheme1

Our Scheme1 is an improvement of a DBE scheme which we call DPP07 pro-
posed by Delerablée et al. [9]. It consists of four algorithms, {Setup, Join,Encrypt,
Decrypt} as described below. Note that, Aggregate and Decrypt algorithms (in-
cluding Aggregate′ algorithm) are the same as in DPP07. It should be also noted
that {Join,Encrypt,Decrypt} algorithms use params generated by Setup algorithm
and we omit the notation about it for simplicity.

Setup(λ): Takes as input a security parameter λ, this algorithm chooses a λ-
bit prime p, selects cyclic groups (G1,G2,GT ) of order p and a bilinear
map e : G1 × G2 → GT , and sets a set of system parameters params =
(p,G1,G2,GT , e). It also selects two random generators G ∈ G1, H ∈ G2
and a secret value γ ∈R Z∗

p. The master key is mk = (γ,G). W = γG ∈
G1 is computed using the master key. Next, it chooses an unique value
u0 ∈R Z∗

p \ {−γ} for a dummy user and computes a dummy key dk0 =(
u0, A0 = 1

γ+u0
G ∈ G1, H0 = 1

γ+u0
H ∈ G2

)
. Finally, it initializes encryption

key ek = (W,H,H0, u0, A0). The algorithm outputs (params, mk, ek).

Join(i, ek,mk): Takes as input a user counter i, the encryption key ek, and the
master key mk, this algorithm chooses an unique value ui ∈R Z∗

p \ {−γ}
for user i, computes Ai = ui

γ+ui
G ∈ G1, Bi = 1

γ+ui
H0 ∈ G2, and sets user

i’s decryption key dki = (ui, Ai, Bi). Then it updates the encryption key as
ek = ek ∪ {(ui, Bi)}, and outputs the updated ek and dki. Note that user i
does not have to keep (ui, Bi) in a secret manner.

Encrypt(ek,R): Takes as input the encryption key ek and the set of uniquely
assigned values for revoked users R = {uR1 , . . . , uRr}, the algorithm chooses
k ∈R Z∗

p. We define h0(γ) = γ + u0, hl(γ) =
∏l

i=1(γ + uRi), P0 = H0 ∈ G2,
and Pl = 1

hl(γ)H0 ∈ G2 for l = 1, . . . , r at first.
– If r = 0, the algorithm computes K ′ = e(A0, H) ∈ GT .
– Otherwise, it computes Pl(l = 1, . . . , r) using Aggregate algorithm [9]

which we describe below. Then, the Encrypt algorithm derives γPr =
Pr−1 − uRrPr ∈ G2 and K ′ = e(A0, γPr + u0Pr) = e(G,H0)

1
hr(γ) ∈ GT .

After that, it also computes the session key K = (K ′)k ∈ GT and sets
a header as hdr = (kW, kPr, (uR1 , P1), . . . , (uRr , Pr)). The output of this
algorithm is (hdr, K).



36 M. Kusakawa et al.

Aggregate((uR1 , BR1), . . . , (uRr , BRr )) [9]: Let P0,l = BRl
(l = 1, . . . r). For all

(j, l) such that j = 1, . . . , r− 1 and l = j+1, . . . , r, this algorithm computes
Pj,l = 1

uj−ul
(Pj−1,j − Pj−1,l) ∈ G2, and outputs Pr = Pr−1,r.

Decrypt(hdr, dkj) [9]: If the header hdr contains the unique value uj assigned
for user j then the algorithm outputs ⊥ and terminates the procedure.
– If r = 0, the algorithm sets Bj,R = Bj ∈ G2.
– Otherwise, it executes Aggregate′ algorithm [9] which we describe be-

low as Bj,R ← Aggregate′(uj , Bj , (uR1 , P1), . . . , (uRr , Pr)) = 1
hr(γ)Bj =

1
(γ+uj)hr(γ)H0 ∈ G2.

The algorithm computes the session key K = e(kW,Bj,R) · e(Aj , kPr) ∈ GT

and outputs it.

Aggregate′(uj , Bj , (uR1 , P1), . . . , (uRr , Pr))[9]: At first, the algorithm initial-
izes tmp = Bj . For i = 1 to r, it computes tmp = 1

uj−uRi
(Pi − tmp) ∈ G2

and increments i. Finally it outputs tmp as Bj,R.

Correctness. In Scheme1, the output of Encrypt algorithm, namely the session
keyK, is the same as DPP07. Decrypt algorithm (including Aggregate′ algorithm)
is also the same. Hence the correctness of K holds as well as DPP07.

Relationship Between DPP07 and Scheme1. We describe the differences of algo-
rithms between DPP07 and Scheme1.

Setup: In Scheme1 the algorithm generates a dummy key dk0 = (u0, A0, B0 =
H0) and publishes it, while in DPP07 does not. Due to the dummy key, an
arbitrary entity can compute a session key K efficiently without n elements Vi

(i = 1, . . . , n) in the encryption key. However, publishing dk0 enables any entity
to decrypt an arbitrary header even if she/he does not have a decryption key.
To avoid this, the dummy user corresponding to dk0 is always revoked by the
long-term revocation [9] mechanism, namely introducing H0 = 1

γ+u0
H instead

of H itself.
Join: In DPP07, the encryption key ek contains Vi ∈ GT (i = 1, . . . , n), and

Vis corresponding to the revoked users are used for computing the session key K
in Encrypt algorithm. On the other hand, our modification to Encrypt algorithm
makes these elements unnecessary in Scheme1, and hence the total size of ek
becomes smaller than DPP07 by an additive factor of n.

Encrypt: The main difference is the way to generate K ′. In DPP07, the algo-
rithm computes Pl(l = 1, . . . , r) by executing Aggregate algorithm [9] over G2,
then computesK ′ = e(G,H)

1
hr(γ) by executing the same algorithm over GT with

the revoked user’s Vi. It requires a sender to compute O(r2) calculation over G2
for Pls and O(r2) calculation over GT for K ′.

In Scheme1, the algorithm also executes Aggregate algorithm to compute
Pl(l = 1, . . . , r) and its computational cost over G2 is the same as DPP07. How-
ever, it derives γPr from Pr and Pr−1, and computes K ′ = e(A0, γPr + u0Pr)
by using γPr and A0 contained in dk0. The cost to derive K ′ becomes one time



Efficient Dynamic BE and Its Extension 37

execution of the bilinear map e and two additions and multiplications over G2,
respectively. Hence we reduce O(r2) computation over GT to constant overhead
regardless of the number of revoked users r.

2.4 Security Analysis

In this section, we define the security model for a DBE scheme and a problem
which is included in the GDDHE framework [6], then we show the difficulty to
solve it. Finally we give a reduction from the security of Scheme1 to the problem.

Security Model. We define chosen ciphertext security of a DBE scheme against
a static adversary.

Definition 1. The chosen ciphertext security against a static adversary of a
DBE scheme is defined using the following game between adversary A and chal-
lenger B. In the following game, t, n, and qD denote the number of decryption
keys that the adversary A can obtain, the number of total users, and the number
of decryption queries, respectively. For any probabilistic polynomial time adver-
sary A, if it wins the following game at most negligible advantage, we say that the
DBE scheme is (t, n, qD)-IND-DBE-s-CCA secure (where ‘s’ stands for ‘static’).

Setup Phase: The challenger B executes Setup algorithm in order to generate
a system parameter params, an encryption key ek, and a master key mk.
Then, it provides params and ek to the adversary A.

Join Phase: B initializes i = 0, j = t, and S∗ = φ (φ denotes empty set)
where i, j, and S∗ are a counter for corrupt users and uncorrupt users, and
a set of uniquely assigned values for corrupt users, respectively. A issues the
join queries JQl ∈ {‘corrupt’, ‘uncorrupt’} (l = 1, . . . , n). A must issue
‘corrupt’ queries exactly t times. If the received query is ‘corrupt’, then B
assigns an unique value ui for corrupt user i, sets S∗ = S∗∪{ui}, increments
i, returns dki, and updates ek. If the received query is ‘uncorrupt’, B assigns
an unique value uj for the uncorrupt user j, generates the public information
Bj for the user j, returns (uj , Bj), and updates ek.

Query Phase 1: A adaptively issues decryption queries DQ
 = (hdr, ul) (� =
1, . . . , z) where ul and hdr denote an unique value assigned for user l and an
arbitrary header hdr, respectively. B returns the output of Decrypt(hdr, dkl).

Challenge Phase: B generates (hdr∗,K∗) ← Encrypt(ek,S∗). Then, B selects
b ∈R {0, 1}, sets Kb = K∗ and K1−b ∈R KS where KS denotes the space of
session keys. Finally, B provides (hdr∗,K0,K1) to A.

Query Phase 2: A adaptively issues decryption queries DQ
(� = z + 1, . . . ,
qD) as in query phase 1, but with the constraint that hdr �= hdr∗. B responds
as in query phase 1.

Guess Phase: Finally, A outputs b′ ∈ {0, 1}.

If b′ = b, then A wins the game. We denote the advantage of A in the game as

Advind
DBE(t, n, qD,A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.



38 M. Kusakawa et al.

IND-DBE-s-CPA. In analogy with [7,8], we define chosen plaintext security
against a static adversary by prohibiting to issue decryption queries.

Definition 2. If Advind
DBE(t, n, 0,A) is negligible for any probabilistic polynomial

time algorithm A, we say the DBE scheme is (t, n)-IND-DBE-s-CPA secure.

GDDHE Problem. Delerablée et al. [9] defined an instance of the GDDHE
problem by using the GDDHE framework [6]. We call this (t, n)-GDDHEDPP07

problem where t and n are the total number of colluders and users, respectively.
They proved the hardness of (t, n)-GDDHEDPP07 problem in the generic model,
and showed that the security of DPP07 is based on this problem. In Scheme1, we
slightly change encryption key, and it makes a slight difference between problems
where each scheme is based on. We define (t, n)-GDDHEOurs problem as follows.

Definition 3. For random and distinct values xi, xj(0 ≤ i ≤ t− 1, t ≤ j ≤ n) ∈
Z∗

p, we define f(X) and g(X) as follows,

f(X) =
∏t−1

i=0(X + xi) = (X + x0) · · · (X + xt−1),
g(X) =

∏n−1
j=t (X + xj) = (X + xt) · · · (X + xn−1).

Let G and H be generators of cyclic groups G1 and G2, respectively. (t, n)-
GDDHEOurs problem is defined as follows. For a random value α ∈R Z∗

p, given(
G,αG,α2G, . . . , αt−1G, αf(α)G, kαf(α)G,
H,αH,α2H, . . . , αnH, kg(α)H, v

)
,

decide whether v = e(G,H)kf(α)g(α) ∈ GT or a random value over GT .

Note that the instance e(G,H)f2(α)g(α) ∈ GT is included in (t, n)-GDDHEDPP07

problem, while not in (t, n)-GDDHEOurs problem. This is the all of the difference
between them, and we can have the following corollary for their relationship.

Corollary 1. Let t and n denote attack parameters. Let an algorithm AP solve
a problem P with advantage AdvP (t, n,AP ) and let the advantage AdvP (t, n) be
maxAP AdvP (t, n,AP ). Then we have

AdvGDDHEOurs(t, n) ≤ AdvGDDHEDPP07(t, n).

Note that Delerablée et al. showed the difficulty of (t, n)-GDDHEDPP07 problem
in the generic model [9, Corollary 1].

Reduction to (t, n)-GDDHEOurs Problem. We show that the security of
Scheme1 is based on the hardness to solve (t, n)-GDDHEOurs problem. For sim-
plicity, we use t and n as the number of colluders and total users, respectively.
However, it should be noted that these numbers include one dummy user in
Scheme1. It means that the security reduction to (t, n)-GDDHEDPP07 problem
shows that DPP07 is (t, n)-IND-DBE-s-CPA secure, while in Scheme1, the reduc-
tion to (t, n)-GDDHEOurs problem shows (t− 1, n− 1)-IND-DBE-s-CPA security.



Efficient Dynamic BE and Its Extension 39

Table 2. Comparison of computational cost in Encrypt algorithm

over G2 the bilinear over GT

Addition Multiplication map Multiplication Exponentiation Inversion

DPP07 r(r−1)
2

r(r−1)
2

+ 2 0 r(r−1)
2

r(r−1)
2

+ 1 r(r−1)
2

Scheme1 r(r−1)
2

+ 2 r(r−1)
2

+ 4 1 0 1 0

Theorem 1. For arbitrary (t, n) that satisfies 0 < t ≤ n,

Advind
Scheme1(t− 1, n− 1) ≤ 2AdvGDDHEOurs(t, n),

where Advind
Scheme1(t− 1, n− 1) = maxA Advind

Scheme1(t− 1, n− 1, 0,A) for any prob-
abilistic polynomial time adversary A.

The proof is almost the same as the one of DPP07 [9], and we omit it due to
the lack of space. The differences from DPP07 are: one response for a ‘corrupt’
join query contains the dummy key while other t− 1 responses contain a user’s
private key, and V , Vi ∈ GT (i = 1, . . . , n) are not used. Therefore, it is clear
that Scheme1 satisfies (t− 1, n− 1)-IND-DBE-s-CPA security.

Chosen Ciphertext Security. Delerablée et al. [9] note if a DBE scheme is IND-
DBE-s-CPA secure, then it can be IND-DBE-s-CCA secure by using Fujisaki-
Okamoto transform [12] with small cost. It can also be applied to Scheme1.

2.5 Efficiency

We compare the efficiency between DPP07 and Scheme1. In both schemes, dk and
hdr size, and decryption cost are the same. Therefore, we focus on the encryption
cost and ek size.

Encryption Cost. The difference between these schemes is the way to compute
K ′ in Encrypt algorithm. Therefore, we compare only computational cost for K ′

as shown in Table 2, where we observe that the algorithm in Scheme1 requires
only constant additional computations compared with DPP07, namely one com-
putation of the bilinear map, and two additions and scalar multiplications over
G2. On the other hand, multiplications, exponentiations, and inversions over GT

are reduced by r(r− 1)/2, respectively. This means that the computational cost
over GT was reduced from O(r2) to O(1). Note that the recent result [21] for
bilinear map computations shows that the computational cost of a bilinear map
is comparable with a scalar multiplication on an elliptic curve.

Encryption (Public) Key Size. ek in DPP07 consists of label labi = (ui ∈
Z∗

p, Bi ∈ G2, Vi ∈ GT ) for i = 1, . . . , n in addition to W ∈ G1, H ∈ G2 and
V ∈ GT , and hence 3n+ 3 elements in total. On the other hand, ek in Scheme1
consists of (ui ∈ Z∗

p, Bi ∈ G2) for each user i in addition to u0 ∈ Z∗
p, W,A0 ∈ G1

and H,H0 ∈ G2, so 2n + 5 elements in total, and it is smaller than DPP07 if
n > 2. This is since our modification to Encrypt algorithm makes Vis unnecessary.



40 M. Kusakawa et al.

Note that, the above comparison only considers the number of elements in-
cluded in ek. When we consider the bit size given in [5], the sizes of an element in
G1, G2 and GT become 318-bit, 318-bit, and 953-bit, respectively. In this case,
the bit size of ek in DPP07 becomes 318(n+2)+953(n+1)+159n = 1430n+1589,
while in Scheme1 becomes 318(n+ 4) + 159(n+ 1) = 477n+ 1431. This shows
that ek size of Scheme1 is smaller than DPP07 for any n.

3 Authenticated Dynamic Broadcast Encryption (ADBE)

In this section, we propose an authenticated dynamic broadcast encryption
scheme (Scheme2), which realizes not only efficient dynamic broadcast encryp-
tion but also secure signature using common parameters and decryption (signing)
key. The decryption key is used both to sign and verify a signature. We construct
Scheme2 by applying the signature scheme due to Barret et al. [3] to Scheme1.

3.1 Definition of Authenticated Dynamic Broadcast Encryption

An ADBE scheme provides a valid signature for a plaintext M generated with a
decryption key of DBE. The signature can be verified by any unrevoked user. We
define each algorithm used in an ADBE scheme. Since Setup and Join algorithms
are the same as DBE, we omit the explanation of them. A sender broadcasts
(hdr, C, sigi) generated by Encrypt/Sign algorithm, with which an unrevoked user
verifies the authenticity and obtains M with Decrypt/Verify algorithm.

Encrypt/Sign(ek,R,M, dki): Takes as input an encryption key ek, a set of
uniquely assigned values for revoked users R = {uR1, . . . , uRr}, a plain-
text M ∈ MS, and a decryption key dki of user i, where MS denotes the
message space. This algorithm outputs a header hdr, a ciphertext C ∈ CS
which is an encryption of M with a session key K, and a signature sigi,
where CS denotes the ciphertext space.

Decrypt/Verify(hdr, dkj , C, sigi): Takes as input a header hdr, a decryption key
dkj of user j, a ciphertext C, and a signature sigi. If j is unrevoked and sigi

is a valid signature, then this algorithm outputs the unique value ui assigned
for user i and the result of decryption with the session key K. Otherwise, it
outputs ⊥.

3.2 Scheme2

Scheme2 consists of four algorithms, {Setup, Join,Encrypt/Sign,Decrypt/Verify}
as described below. Note that Join, Aggregate, and Aggregate′ algorithms are the
same as in Scheme1, and we omit the description of them.

Setup(λ): Takes as input a security parameter λ, this algorithm chooses a λ-
bit prime p, selects cyclic groups (G1,G2,GT ) of order p and a bilinear
map e : G1 × G2 → GT . It also chooses two cryptographic hash functions



Efficient Dynamic BE and Its Extension 41

H1 : {0, 1}y×G2
T → Z∗

p and H2 : GT → {0, 1}y where we define the message
space MS, the session key space KS, and the ciphertext space CS as y-bit
binary space, respectively, in accordance with [3]. Then it sets a set of system
parameters params = (p,G1,G2,GT , e,H1,H2). Next, it selects two random
generators G ∈ G1, H ∈ G2 and a secret value γ ∈R Z∗

p. The master key is
mk = (γ,G). It computes W = γG ∈ G1 with mk. Finally it sets an initial
encryption key as ek = (W,H). The algorithm outputs params, mk, and ek.

Encrypt/Sign(ek,R,M, dki): Takes as input an encryption key ek, the set of
uniquely assigned values for revoked users R = {uR1 , . . . , uRr} where r
denotes the number of revoked users, a plaintext M , and a decryption key
dki of user i, this algorithm chooses k ∈R Z∗

p. We use the definition of hl(γ)
given in Sect. 2.3 and also define P ′

0 = H ∈ G2 and P ′
l = 1

hl(γ)H ∈ G2 for
l = 1, . . . , r.
– If r = 0, this algorithm treats user i as a revoked user. It sets r = 1,
uR1 = ui, and P ′

1 = Bi ∈ G2, and computes K ′ = e( 1
ui
Ai, H) ∈ GT .

– Otherwise, it computes P ′
l (l = 1, . . . , r) using Aggregate algorithm, γP ′

r =
P ′

r−1 − uRrP
′
r ∈ G2, and K ′ = e( 1

ui
Ai, γP

′
r + uiP

′
r) ∈ GT .

Then the algorithm derives the temporary key TK = (K ′)k ∈ GT and
the session key K = H2(TK) ∈ {0, 1}y, and sets the header as hdr =
(kW, kP ′

r, (uR1 , P
′
1), . . . , (uRr , P

′
r)). It also encrypts M to the ciphertext C

with K as C = M ⊕ K ∈ {0, 1}y. Next, it chooses ρ ∈R Z∗
p and computes

δi = (K ′)ρ ∈ GT , hi = H1(C, TK, δi), and σi = ρ−hi

ui
Ai ∈ G1. In the case of

ρ = hi, it chooses another ρ and computes δi, hi, and σi once again. It also
constructs the signature sigi = (ui, hi, σi), and outputs hdr, sigi, and C.

Decrypt/Verify(hdr, dkj , C, sigi): If there is the unique value uj assigned for
user j in the broadcasted header hdr, then the algorithm outputs ⊥ and
terminates the procedure. Otherwise, it executes Aggregate′ algorithm as
Bj,R ← Aggregate′(uj , Bj , (uR1 , P

′
1), . . . , (uRr , P

′
r)) = 1

(γ+uj)hr(γ)H ∈ G2,
and computes the temporary key as TK = e(kW,Bj,R) · e(Aj , kP

′
r) ∈ GT .

To verify the signature sigi, it sets γP ′
r = P ′

r−1 − uRrP
′
r ∈ G2 and computes

K ′ = e( 1
uj
Aj , γP

′
r + ujP

′
r) ∈ GT and δj = e(σi, γP

′
r + uiP

′
r) · (K ′)hi ∈ GT . If

hi �= H1(C, TK, δj), then it outputs ⊥ meaning that the signature is invalid.
Otherwise, it computes the session key K = H2(TK) ∈ {0, 1}y, obtains the
plaintext M from the ciphertext C with K as M = C ⊕ K ∈ {0, 1}y, and
outputs (ui,M).

Correctness. The correctness of the temporary key TK is the same as the
session key K in Scheme1. Decrypt/Verify algorithm computes γP ′

r = P ′
r−1 −

uRr

γ+uRr
P ′

r−1 = γ
γ+uRr

P ′
r−1 ∈ G2 and K ′ = e

(
1
uj
Aj , γP

′
r + ujP

′
r

)
= e(G,H)

1
hr(γ)

∈ GT . If (hdr, C, sigi) ← Encrypt/Sign(ek,R,M, dki), the value of δj becomes

δj = e(σi, γP
′
r+uiP

′
r)·(K ′)hi =e

(
ρ− hi

γ + ui
G,
γ + ui

hr(γ)
H

)
·e(G,H)

hi
hr(γ) =(K ′)ρ =δi.

Consequently, the verification equation hi = H1(C, TK, δj) is satisfied.



42 M. Kusakawa et al.

3.3 Security Analysis

Scheme2 achieves both functions of dynamic broadcast encryption and signa-
ture, where a user’s decryption key is used to encrypt and decrypt the header,
to sign and verify a signature. Hence we need to consider not only message
confidentiality but also signature unforgeability.

Message Confidentiality. We define IND-ADBE-s-CCA and IND-ADBE-s-
CPA security for an ADBE scheme.

Definition 4. The chosen ciphertext security against a static adversary for an
ADBE scheme is defined using the following game between adversary A and chal-
lenger B. In the following game, t, n, qES, and qDV denote the number of decryp-
tion keys that the adversary A can obtain, the number of total users, the number
of encrypt/sign queries, and the number of decrypt/verify queries, respectively.
For any probabilistic polynomial time adversary A, if it wins the following game
at most negligible advantage Advind

ADBE(t, n, qES , qDV ,A), we say that the ADBE
scheme is (t, n, qES , qDV )-IND-ADBE-s-CCA secure.

In the following game, the definition of Setup and Join phases are the same
as the game for DBE in Sect. 2.4.

Query Phase 1: The adversary A adaptively issues encrypt/sign queries ESQω

(ω = 1, . . . , z) and decrypt/verify queries DVQ
(� = 1, . . . , z′),
- Encrypt/Sign query: A issues an arbitrary plaintext M ∈ MS, the set

of uniquely assigned values for revoked users R = {uR1 , . . . , uRr′ } which
A chooses arbitrarily, and a unique value ul of an arbitrary signer l as
ESQω = (M,R, ul). B returns (hdr, C, sigl) ← Encrypt/Sign (ek,R,M,
dkl).

- Decrypt/Verify query: A issues a unique value uj of an arbitrary user
j, an arbitrary header hdr, a ciphertext C, and a signature sigl as DVQ


= (hdr, C, sigl). B returns the output of Decrypt/Verify(hdr, dkj , C, sigl).
Challenge Phase: A arbitrarily chooses a signer l∗ and two plaintexts M0,M1

∈ MS, then sends M0,M1 and l∗’s unique value ul∗ to B. B chooses b ∈R

{0, 1} and returns (hdr∗, C∗, sigl∗) ← Encrypt/Sign(ek,S∗,Mb, dkl∗).
Query Phase 2: A adaptively issues encrypt/sign queries ESQω(ω = z +

1, . . . , qES) and decrypt/verify queries DVQ
(� = z′ + 1, . . . , qDV ) as in
query phase 1, but with the constraint that (hdr, C, sigl) �= (hdr∗, C∗, sigl∗) in
decrypt/verify queries. B responds as in query phase 1 for each query.

Guess Phase: Finally, A outputs b′ ∈ {0, 1}.

If b′ = b, then A wins the game. We denote the advantage of A in the game as

Advind
ADBE(t, n, qES , qDV ,A) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

IND-ADBE-s-CPA. In analogy with [7,8], we define chosen plaintext security
against a static adversary by prohibiting to issue decrypt/verify queries.

Definition 5. If Advind
ADBE(t, n, qES , 0,A) is negligible for any probabilistic poly-

nomial time algorithm A, we say the ADBE scheme is (t, n, qES)-IND-ADBE-s-
CPA secure.



Efficient Dynamic BE and Its Extension 43

Reduction to (t, n)-GDDHEOurs Problem. The message confidentiality of
Scheme2 is based on the hardness to solve (t, n)-GDDHEOurs problem as well as
Scheme1.

Theorem 2. Let H1 be a random oracle. We assume that if a value v is uni-
formly distributed over GT , H2(v) is uniformly distributed over KS. For arbitrary
(t, n) that satisfies 0 < t ≤ n,

1
2

(
1 − (qH1 + qES)qES

p

)
Advind

Scheme2(t, n, qES) ≤ AdvGDDHEOurs(t, n)

where Advind
Scheme2(t, n, qES) = maxA Advind

Scheme2(t, n, qES , 0,A) for any probabilis-
tic polynomial time adversary A and qH1 denotes the number of H1 queries.

Proof. Let t and n be the number of colluders and total users, respectively.
We assume that there is an adversary A who breaks message confidentiality of
Scheme2 with (t, n) as attack parameters. We construct a reduction algorithm
B which solves (t, n)-GDDHEOurs problem as follows.

At first, for any xi, xj ∈ Z∗
p such that satisfy (α+ xi)|f(α) and (α+ xj)|g(α),

respectively, we define fi(α) = 1
α+xi

f(α) =
∑t−1

z=0 czα
z and gj(α) = 1

α+xj
g(α) =∑n−t−1

z=0 dzα
z . Note that c0, . . . , ct−1 and d0, . . . , dn−t−1 can be computed from

x0, . . . , xt−1 and xt, . . . , xn−1, respectively. Since deg(fi(α)) = t− 1 and deg(gj
(α)) = n− t− 1, we can also compute fi(α)G ∈ G1 and gj(α)H ∈ G2 by using
the instance of (t, n)-GDDHEOurs problem. In the same manner, we can compute
a polynomial 1

h(α)f(α)g(α)H ∈ G2 if h(α) satisfies h(α)|f(α)g(α).

Setup Phase. The challenger B generates each value as follows. Let W ′ =
αf(α)G ∈ G1, and B computes H ′ = f(α)g(α)H ∈ G2 from x0, . . . , xn−1,
H,αH, . . . , αnH . Note that if we regard γ = α ∈ Z∗

p and G′ = f(α)G ∈ G1,
then we have W ′ = γG′. B gives params = (p,G1,G2,GT , e,H1,H2) and ek =
(W ′, H ′) to the adversary A.

H1 Queries. We treatH1 as a random oracle.A issuesH1 queries with (C, TK, δl)
at most qH1 times. Upon receiving a query from A, if there exists (C, TK, δl) in
the list L1, B returns the corresponding answer h. Otherwise, B selects h ∈R Z∗

p,
adds (C, TK, δl, h) to L1, and returns h.

Join Phase. B initializes i = 0, j = t, and S∗ = φ. A issues the join queries
JQl ∈ {‘corrupt’, ‘uncorrupt’} (l = 1, . . . , n). If the received query is ‘corrupt’,
then B sets ul = xi ∈ Z∗

p, S∗ = S∗ ∪ {ul}, Al = xifi(α)G ∈ G1, and Bl =
fi(α)g(α)H ∈ G2 for the corrupt user i. B returns dkl = (ul, Al, Bl), updates
ek as ek = ek ∪ {(ul, Bl)}, and increments i. Otherwise, B sets ul = xj ∈ Z∗

p,
Bl = f(α)gj(α)H ∈ G2 for the uncorrupt user j, returns (ul, Bl), updates ek as
ek = ek ∪ {(ul, Bl)}, and increments j. Note that the set of uniquely assigned
values for corrupt users becomes S∗ = {uS∗

1
, . . . , uS∗

t
} = {x0, . . . , xt−1} at the

end of this phase.



44 M. Kusakawa et al.

Query Phase. A adaptively issues encrypt/sign queries ESQω = (M,R, ul)(ω =
1, . . . , qES) where M ∈ MS, R = {uR1, . . . , uRr′}. If R = φ, then B sets
R = {uR1 = ul}. B computes P ′

m = 1
hm(α)H

′ = f(α)g(α)
hm(α) H =

∑n−m
ω=0 zωα

ωH ∈
G2 for m = 1, . . . , r′ using x0, . . . , xn−1 and H,αH, . . . , αnH . Then, B chooses
k′ ∈R Z∗

p, and constructs a header hdr = (k′W ′, k′P ′
r′ , (uR1 , P

′
1), . . . , (uRr′ , P

′
r′)).

Next, B computes uRr′P
′
r′ , αP ′

r′ = P ′
r′−1 −

uR
r′

α+uR′
r

P ′
r′−1, and

K ′ = e

(
1

α+ uS∗
i

G′, αP ′
r′ + uS∗

i
P ′

r′

)
= e(G′, H ′)

1
h

r′ (α) ∈ GT

by using
uS∗

i

α+uS∗
i

G′ = xifi(α)G of an arbitrary corrupt user S∗
i . B also computes

TK = (K ′)k′ ∈ GT and K = H2(TK). Then B encrypts M with K as C =
M ⊕ K ∈ {0, 1}y. Subsequently, B generates a signature sigl. In the case of
ul ∈ {uS∗

1
, . . . , uS∗

t
}, B already has dkl for any corrupt user l and it is easy

to execute remaining procedure of Encrypt/Sign algorithm. Otherwise B selects
σl ∈R G1 and hl ∈R Z∗

p and constructs δl = e(σl, αP
′
r′ + ulP

′
r′) · (K ′)hl ∈ GT .

If there already exists (C, TK, δl) computed above in the list L1, B aborts this
game. Otherwise B adds (C, TK, δl, hl) to the list L1. Finally B constructs sigl =
(ul, hl, σl) and returns (hdr, C, sigl).

Challenge Phase. A issues M0,M1 ∈ MS and the unique value ul of a signer
l to B. B selects b ∈R {0, 1} and generates (hdr∗, C∗, sig∗l ) as follows. B com-
putes Pi(i = 1, . . . , t) ∈ G2 with S∗ = {uS∗

1
, . . . , uS∗

t
} as the set of uniquely as-

signed values for corrupt users, and constructs hdr∗ = (kW ′, k
f(α)H

′, (uS∗
1
, P ′

1),
. . . , (uS∗

t
, P ′

t )). B also computes K ′ in the same manner as encrypt/sign phase
and sets TK∗ = v. Then B sets K∗ = H2(TK∗) and encrypts Mb with K∗ as
C∗ = Mb ⊕K∗ ∈ {0, 1}y. Subsequently, B generates the signature sig∗l . B selects
σ∗l ∈R G1 and h∗l ∈R Z∗

p, and constructs δ∗l = e(σ∗l , αP
′
t + ulP

′
t ) · (K ′)h∗

l ∈ GT .
If there already exists (C∗, TK∗, δ∗l ) computed above in the list L1, B aborts
this game. Otherwise, B adds (C∗, TK∗, δ∗l , h

∗
l ) to L1. Finally, B constructs

sigl = (ul, h
∗
l , σ

∗
l ) and returns (hdr∗, C∗, sig∗l ).

Guess Phase. For b′ returned from A, B outputs real if b′ = b, otherwise outputs
rand. AdvGDDHEOurs(t, n,B) can be transformed as follows,

AdvGDDHEOurs(t, n,B) =
1
2

(
1 − (qH1 + qES)qES

p

)
Advind

Scheme2(t, n, qES ,A).

��

Signature Unforgeability. We define EUF-ADBE-s-CMA security for an
ADBE scheme.

Definition 6. The existential unforgeability against a static chosen message ad-
versary for any ADBE scheme is defined using the following game between adver-
sary A and challenger B. In the following game, t, n, qES, and qDV denote the



Efficient Dynamic BE and Its Extension 45

number of decryption keys that the adversary A can obtain, the number of to-
tal users, the number of encrypt/sign queries, and the number of decrypt/verify
queries, respectively. For any probabilistic polynomial time adversary A, if it
wins the following game at most negligible advantage, we say that the ADBE
scheme is (t, n, qES , qDV )-EUF-ADBE-s-CMA secure.

The following game consists of four phases, Setup, Join, Query, and Output.
The definition of Setup and Join phases are the same as the game in Definition
4. Query phase is the same as Query phase 1 of the game in Definition 4 expect
for the total number of encrypt/sign and decrypt/verify queries.

Query Phase: The adversary A adaptively issues encrypt/sign queries ESQω

(ω = 1, . . . , qES) and decrypt/verify queries DVQ
(� = 1, . . . , qDV ).
Output Phase: A outputs (hdr∗, C∗, sigj∗) where uj∗ /∈ S∗.

The adversary A wins the game if the output of Decrypt/Verify(hdr∗, dkl, C
∗, sigj∗)

where ul /∈ S∗ is not ⊥. We denote the advantage of A in the game by Adveuf
ADBE

(t, n, qES , qDV ,A).

(t, n, qES , 0)-EUF-ADBE-s-CMA. In analogy with IND-ADBE-s-CPA security,
we consider (t, n, qES , 0)-EUF-ADBE-s-CMA security against a static adversary
for an ADBE scheme by prohibiting to issue decrypt/verify queries.

(t + 1, n)-SDH Problem. The signature unforgeability of Scheme2 is based
on the difficulty to solve (t + 1, n)-SDH problem. At first, we define (t, n)-SDH
problem as follows.

Definition 7. Let G and H be generators of cyclic group G1 and G2, respec-
tively. (t, n)-SDH problem is defined as follows. For a random value α ∈R Z∗

p,
given

(G,αG,α2G, . . . , αtG,H,αH,α2H, . . . , αnH),

compute 1
α+wG ∈ G1 for an arbitrary value w ∈ Z∗

p \ {−α}.

Boneh et al. proved the hardness to solve q-SDH problem in the generic model [5,
Theorem 12]. By using this proof, the hardness to solve (t+ 1, n)-SDH problem
can be also proven in the generic model with some changes. In the proof of
Theorem 12 [5], three lists L1, L2, and LT are used to simulate group opera-
tions over G1,G2, and GT , respectively. We change the initial numbers of their
elements as τ1 = t + 2, τ2 = n + 1, and τT = 0. The simulation is the same
except for the above change and the degrees of polynomial F1,i, F2,i, and FT,i

included in the list L1, L2 and LT , respectively. When the simulation is fin-
ished, the degrees of F1,i, F2,i are at most n, and the degree of FT,i is at most
2n because we need to consider homomorphism and its inverse queries. Conse-
quently, by the applying above values to Theorem 12 [5], we have the following
corollary.



46 M. Kusakawa et al.

Corollary 2. For any probabilistic algorithm A that totalizes at most q queries
to the oracles performing group operations in G1,G2, and GT and evaluations
of the bilinear map e,

AdvSDH(t+ 1, n,A) ≤ (q + n+ t+ 3)2 · n
p− 1

,

where AdvSDH(t + 1, n,A) is the advantage of probabilistic polynomial time ad-
versary A to solve (t+ 1, n)-SDH problem.

Theorem 3. Let H1 be a random oracle. We assume that if a value v is uni-
formly distributed over GT , H2(v) is uniformly distributed over KS. If there is a
forger A which has running time t1 and advantage Adveuf

Scheme2(t, n, qES , 0,A) ≥
10(qES + 1)(qES + qH1)/2λ, then (t + 1, n)-SDH problem can be solved within
expected time

t′1 ≤ 120686qH1

t1 +O(n2qES)τG1,2,mul +O(qES)τp
Adveuf

Scheme2(t, n, qES , 0,A)
+O(n2)τG1,2,mul,

where qH1 denotes the number of H1 queries.

Proof. We use the same definitions for fi(α) and gj(α) defined in the proof of
message confidentiality.

Setup Phase. B chooses w0, . . . , wn−1 ∈R Z∗
p and computes c0, . . . , ct ∈ Zp and

d0, . . . , dn−t ∈ Zp that satisfies f(α) = (α+ w0) · · · (α + wt−1) =
∑t

i=0 ciα
i and

g(α) = (α+wt) · · · (α+wn−1) =
∑n−t

j=0 djα
j . Note that, in the proofs of theorem

1 and 2, f(α) and g(α) are fixed by the instance of (t, n)-GDDHEOurs problem.
In this proof however, B can compute f(α)G and g(α)H by using random values
w0, . . . , wn−1 ∈R Z∗

p and the instance of (t+ 1, n)-SDH problem.
B also computesW ′ = αf(α)G =

∑t
i=0 ciα

i+1G ∈ G1 andH ′ = f(α)g(α)H ∈
G2. Note that, if we regard γ = α ∈ Z∗

p and G′ = f(α)G ∈ G1, then we have
W ′ = γG′. B gives params = (p,G1,G2,GT , e,H1,H2) and ek = (W ′, H ′) to A.
We regard H1 as a random oracle, and queries to H1 are treated as the same as
in the proof of Theorem 2. Join and Query phases are also the same except for
replacing xi and xj with wi and wj .

Output Phase. Under the above settings, we can apply the Forking Lemma [18].
This lemma shows that B can construct a Turing machine A′ which generates
two valid signatures such that the messages and the commitments are the same
while hashed values and signatures are different, by using the forger A against
Scheme2 as a subroutine. B executes A′ and obtains two output (hdr∗, C∗, sigj∗)
and (hdr∗, C∗, sig′j∗) where sigj∗ = (w, h, σj∗ ) and sig′j∗ = (w, h′, σ′j∗) for the

same w that satisfies w /∈ {wi|i = 0, . . . , t − 1}. So we have, e
(
σj∗ ,

α+w
hr′ (α)H

′
)
·

e
(
G′, 1

hr′ (α)H
′
)h

= e
(
σ′j∗ ,

α+w
hr′ (α)H

′
)
·e
(
G′, 1

hr′ (α)H
′
)h′

∈ GT . From this equa-

tion, B can compute 1
α+wf(α)G =

σj∗−σ′
j∗

h′−h ∈ GT . B derives 1
α+wG ∈ G1



Efficient Dynamic BE and Its Extension 47

from 1
α+wf(α)G by using the same calculation with [3,5], namely, B computes

β−1, β0, . . . , βt ∈ Z∗
p that satisfies f(α)/(α + w) = β−1/(α + w) +

∑t−1
i=0 βiα

i,

then it derives 1
α+wG ∈ G1 as 1

α+wG = 1
β−1

(
1

α+wf(α)G−
∑t−1

i=0 βiα
iG
)
. Note

that (w, 1
α+wG) is the correct answer to the given (t+ 1, n)-SDH problem.

From all discussions described above, if A can forge a signature in time t1 and
with advantage Adveuf

Scheme2(t, n, qES , 0,A) ≥ 10(qES + 1)(qES + qH1)/2λ, then B
can solve (t+ 1, n)-SDH problem in expected time

t′1 ≤ 120686qH1

t1 +O(n2qES)τG1,2,mul +O(qES)τp
Adveuf

Scheme2(t, n, qES , 0,A)
+O(n2)τG1,2,mul.

��

4 Conclusion

In this paper, we proposed two efficient dynamic public-key broadcast encryp-
tion schemes. Our Scheme1 reduces public key size and the encryption cost by
modifying DPP07. Scheme2 achieves broadcast encryption and signature with
the same parameters and keys. The message confidentiality of our schemes are
based on the hardness to solve GDDHE problem in the standard model (Scheme1)
and in the random oracle model (Scheme2). We also showed that the signature
unforgeability of Scheme2 is based on the hardness to solve (t+1, n)-SDH prob-
lem in the random oracle model. Consequently, Scheme1 realizes an efficient
dynamic broadcast encryption and Scheme2 is the first one which gives security
proof for authenticated dynamic broadcast encryption with common parameters
and keys, simultaneously.

References

1. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg
(2002)

2. Attrapadung, N., Imai, H.: Graph-decomposition-based frameworks for subset-
cover broadcast encryption and efficient instantiations. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)

3. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidel-
berg (2005)

4. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

5. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)



48 M. Kusakawa et al.

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

9. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

10. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

13. Kanazawa, F., Ohkawa, N., Doi, H., Okamoto, T., Okamoto, E.: Improvement
of broadcast encryption with sender authentication and its security. 2007-csec-37,
IPSJ SIG Technical Report (2007)

14. Li, F., Xin, X., Hu, Y.: Indentity-based broadcast signcryption. Computer Stan-
dards and Interfaces 30(1–2), 89–94 (2008)

15. Mu, Y., Susilo, W., Lin, Y.-X., Ruan, C.: Identity-based authenticated broadcast
encryption and distributed authenticated encryption. In: Maher, M.J. (ed.) ASIAN
2004. LNCS, vol. 3321, pp. 169–181. Springer, Heidelberg (2004)

16. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

17. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

18. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

19. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. Cryptology ePrint
Archive, Report 2007/217 (2007), http://eprint.iacr.org/

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

21. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings
on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp.
134–147. Springer, Heidelberg (2006)

http://eprint.iacr.org/


Cryptanalysis of Short Exponent RSA with
Primes Sharing Least Significant Bits

Hung-Min Sun1, Mu-En Wu1, Ron Steinfeld3,
Jian Guo2, and Huaxiong Wang2,3

1 Department of Computer Science,
National Tsing Hua University, Taiwan

hmsun@cs.nthu.edu.tw, mn@is.cs.nthu.edu.tw
2 School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore

{guojian,hxwang}@ntu.edu.sg
3 Centre for Advanced Computing - Algorithms and Cryptography,

Department of Computing, Macquarie University, Australia
rons@ics.mq.edu.au

Abstract. LSBS-RSA denotes an RSA system with modulus primes,
p and q, sharing a large number of least significant bits. In ISC 2007,
Zhao and Qi analyzed the security of short exponent LSBS-RSA. They
claimed that short exponent LSBS-RSA is much more vulnerable to the
lattice attack than the standard RSA. In this paper, we further raise the
security boundary of the Zhao-Qi attack by considering another polyno-
mial. Our improvemet supports the result of analogue Fermat factoring
on LSBS-RSA, which claims that p and q cannot share more than n

4

least significant bits, where n is the bit-length of pq. In conclusion, it
is a trade-off between the number of sharing bits and the security level
in LSBS-RSA. One should be more careful when using LSBS-RSA with
short exponents.

Keywords: RSA, least significant bits (LSBs), LSBS-RSA, short
exponent attack, lattice reduction technique, the Boneh-Durfee attack.

1 Introduction

Since 1978, RSA [20] is the most popular cryptosystem in the world. Its security
is based on the hardness of factoring problem. Generally we apply 1024-bit RSA
modulus to achieve the goal of factoring-infeasible, but such large modulus also
causes the inefficiency in encryption and decryption of RSA. Consequently, many
practical issues have been considered when implementing RSA such as how to
reduce the encryption time (or signature-verification time), how to reduce the
decryption time (or signature-generation time) [16], [17], etc.. One of the most
common methods to reduce the decryption time is using a short private exponent
d. However, in 1990 Wiener [25] showed that choosing too small private exponent
is insecure when using RSA system. Indeed, instances of RSA with d < N0.25

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 49–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



50 H.-M. Sun et al.

can be efficiently broken by the continued fraction attack, which is also called
the Wiener attack. The boundary of the Wiener attack had been extended by
Boneh and Durfee [3] in 1998. They took advantage of lattice reduction tech-
nique and showed that instance of RSA with d < N0.292 should be considered
insecure. Although their method is heuristic, the experiments demonstrate the
effectiveness of the attack.

LSBS-RSA denotes an RSA system with modulus primes sharing a large num-
ber of least significant bits. This RSA variant was suggested to improve the
computational efficiency of server-aided signature generation [6], [22]. Steinfeld
and Zheng analyzed the security of LSBS-RSA under the partial key exposure
attacks in [21], and [22]. Sun et. al. [19] further improved this result by using the
property of LSBS-RSA. Their results show that LSBS-RSA with small public
exponent is inherently resistant to the partial key exposure attacks. This gives
an advantage of using small exponent LSBS-RSA in applications. However, it
does not imply that LSBS-RSA is secure against all the small exponent attacks.
Zhao and Qi [26] showed that LSBS-RSA is much more vulnerable than the
standard RSA against the attack by using lattice reduction technique. Here we
call the Zhao-Qi attack throughout this paper. Let α be the parameter such
that |p− q| = r ·2( 1

2−α)n for some odd integer r. The Zhao-Qi attack shows that
LSBS-RSA is insecure under the condition

β < 1
6α+ 13

12 −
1
3

√
α2 + (6γ + 1)α+ 12γ+1

4 ,

where β and γ satisfy d = Nβ and e = Nγ , respectively. For example, if p and q
share 0.2n least significant bits and e ≈ N (i.e., γ = 1, α = 0.3), then LSBS-RSA
will be insecure when d < N0.335.

In this paper, we give a revised version of the Zhao-Qi attack to further raise
the security boundary. Also, we provide a new method by considering another
polynomial to attacking LSBS-RSA, which conducts to a better result compared
with the Zhao-Qi attack. Our result shows that LSBS-RSA is insecure under the
condition

β < 2
3α+ 5

6 −
4
3

√
α2 + (3

2γ −
1
2 )α − 6γ−1

16 .

Take the case e ≈ N for example, if the modulus primes share the 0.2n least
significant bits (i.e., γ = 1, α = 0.3), LSBS-RSA will be insecure if d < N0.662 ,
which is much higher than Zhao and Qi’s boundary. Moreover, compared with
the Boneh-Durfee attack [3], [4] and de Weger’s attack on RSA with small prime
difference [24], our result yields an improvement when primes sharing a large
number of least significant bits.

The remainder of this paper is organized as follows. In Section 2, we briefly re-
view LSBS-RSA, lattice reduction technique, and the Zhao-Qi attack. In
Section 3, we revise the Zhao-Qi attack to raise the security boundary.
Section 4 shows the proposed method to analyze the security boundary of short
exponent LSBS-RSA. Further discussions are shown in Section 5. Finally, we
conclude this paper and give some open problems in Section 6.



Cryptanalysis of Short Exponent RSA 51

2 Preliminaries

2.1 LSBS-RSA and the Notation: α, β, and γ

An RSA system with modulus primes sharing a large number of least significant
bits is called LSBS-RSA. Denote an LSBS-RSA modulus N = pq as the product
of two large primes p and q, with p & q share the (1

2 −α)n least significant bits,
where q < p < 2q, and n is the bit-length ofN . We may write |p− q| = r·2( 1

2−α)n

for some integer r of αn bits and it is obvious that α ≤ 1
2 . In the following table

we define the notation α, β, and γ used in the paper.

α: α is the parameter such that |p− q| = r · 2( 1
2−α)n for some odd integer r

β: β is the parameter such that d = Nβ .
γ: γ is the parameter such that e = Nγ .

In addition, we define the function ”LSB(·)”. Given an integer x ofm bits, whose
binary representation is

(x)2 = (xm, xm−1, ...xj , ..., xi, ..., x2, x1)2,

where xi = 0 or 1 for i = 1, ...,m. Then, xm should be 1, which is called the
most significant bit of x. x1 could be 0 or 1, which is called the least significant
bit of x. Denote ”LSBi˜j(x)” as the i-th to j-th least significant bits of (x)2,
where i < j. That is,

LSBi˜j(x) = (xj , ..., xi)2.

And denote ”LSBi(x)” as the i-th least significant bit of (x)2. That is,

LSBi(x) = xi.

The following lemma shows the exposed portion of the modulus primes if p and
q share a number of least significant bits.

Lemma 1. Let N = pq denote an n-bit modulus in LSBS-RSA, where LSB1˜m

(p) = LSB1˜m (q). There exists an algorithm to compute the LSB1˜2m (p+ q),
LSB1˜m (p), and LSB1˜m (q) in time polynomial in n.

Proof. Let p = pH · 2m + l and q = qH · 2m + l. Thus, l is a solution to the
modular quadratic congruence x2 ≡ N (mod 2m), and it can be computed at
most for 4 candidates in time polynomial in n (see Lemma 1 in [22] for more
detail). Consider the identity

(p+q
2 )2 = (p−q

2 )2 +N .

Replacing p and q by pH · 2m + l and qH · 2m + l, respectively, conducts to

LSB1˜2m−2
(
l · (pH + qH) · 2m + l2

)
= LSB1˜2m−2 (N) .



52 H.-M. Sun et al.

Note that l is an odd integer. Thus, l−1 (mod 22m−2) exists and we denote it as
l−1 for short. We have

LSB1˜2m−2((pH + qH) · 2m) = LSB1˜2m−2
(
l−1 · (N − l2)

)
, (1)

which implies

LSB1˜2m−1
(

p+q
2

)
= LSB1˜2m−1((pH + qH) 2m−1 + l)

= LSB1˜m (pH + qH) || LSBm

(
(pH + qH) 2m−1 + l

)
|| LSB1˜m−1 (l),

(2)

where “||” denotes the symbol for concatenation. Combining (1) and (2) we can
compute LSB1˜2m−1

(
p+q
2

)
. Thus, we have

LSB1˜2m (p+ q) = LSB1˜2m−1
(

p+q
2

)
|| 0,

which completes the proof.

The following corollary is the key point we used in the paper to improve the
Zhao-Qi attack.

Corollary 1. Let N = pq denote an n-bit modulus of LSBS-RSA, where p and q
share the (1

2−α)n least significant bits, i.e., LSB1˜( 1
2−α)n (p) = LSB1˜( 1

2−α)n (q).
Then, LSB1˜( 1

2−α)n (p+ q), LSB1˜( 1
2−α)n (p), and LSB1˜( 1

2−α)n (q), are known to
the attacker.

Proof. The proof is quite easy. We just replace m in Lemma 1 by (1
2 − α)n.

Note that we should set α > 1
4 . In case of α ≤ 1

4 , which means that p and q
share the n

4 least significant bits at least, the modulus N can be factored in time
polynomial in n (see Corollary 1 in [22]). This result is analogue to the result
of Fermat’s factoring method, which factors N immediately if p and q share the
n
4 most significant bits at least. We call the factoring attack when α ≤ 1

4 as
“Analogue Fermat factoring” in the paper.

2.2 Lattice Attack

A vector space L is called a lattice if L is spanned by ω linearly independent
vectors, denoted as u1, u2, ..., uω ∈ Zn, over Z. That is,

L =

{
ω∑

i=1

aiui | where ai ∈ Z and ui ∈ Zn for i = 1, ..., ω

}
.

u1, u2, ..., uω are also called the basis of lattice L. We say that L is full rank if
ω = n. The determinant of a full rank lattice L, denoted as det (L), is equal to
the determinant of the n by n matrix whose rows are u1, u2, ..., uω. Next we
show the result of the output of the LLL algorithm, which produces a new basis
of lattice L with the following properties.



Cryptanalysis of Short Exponent RSA 53

Lemma 2. [15] Suppose that L is a lattice with basis {u1,u2, ...,uω}. Given the
input {u1,u2, ...,uω}, LLL algorithm can produce a new basis {b1,b2, ...,bω}
satisfying:

1. ‖b∗
i ‖

2 ≤ 2
∥∥b∗

i+1

∥∥2 for i = 1, ..., ω − 1.

2. If bi = b∗
i +

i−1∑
j=1
µi,jb∗

j , then |µj | ≤ 1
2 for all j and i = 1, ..., ω.

We call {b1,b2, ...,bω} an LLL-reduced basis of L. Here, we just mention one
of the properties of LLL-reduced basis that will be used in the paper.

Theorem 1. Let {b1,b2, ...,bω} be an LLL-reduced basis of L. Then,

‖b1‖ ≤ 2
ω
2 det (L)

1
ω , and ‖b2‖ ≤ 2

ω
2 det (L)

1
ω−1 .

Coppersmith [7] took the advantage of LLL algorithm to find the small roots of a
modular equation. Suppose that the norm of a polynomial h(x, y) =

∑
i,j ai,jx

iyj

is defined as ‖h(x, y)‖2 =
∑

i,j a
2
i,j . Howgrave-Graham [13] followed Copper-

smith’s method to show the following lemma, which is a powerful tool in the
cryptanalysis of RSA systems.

Lemma 3. (Howgrave-Graham) Let h(x, y) ∈ Z [x, y] be a bivariate polynomial
which is a sum of at most ω monomials. Suppose that

1. h(x0, y0) = 0 (mod em), where m ∈ N
2. ‖h(xX, yY )‖ < em

√
ω
, where |x0| < X, |y0| < Y .

Then h(x0, y0) = 0 holds over the integers.

The proof of Lemma 3 can be found in earlier citations, such as [7], [3], [4],
[8], [9].

In the heuristic variant of the lattice attacks (with bivariate\trivariate mod-
ular polynomials) that we consider in this paper, we hope that we get two alge-
braically independent polynomials from the lattice. Given a modular polynomial
f(x, y) = 0 (mod e) with ω monomials. We may construct a set of polynomials
with the same root as f(x, y) = 0 (mod e), and regard these polynomials as a
basis of the lattice L by representing their coefficients as the vectors with ω
components. Then, applying the LLL algorithm to produce the first two short-
est vectors in LLL basis, denoted as f1(x, y) and f2(x, y), whose norms are
smaller than 2

ω
2 det (L)

1
ω and 2

ω
2 det (L)

1
ω−1 , respectively. Thus, according to

Lemma 3, if we set 2
ω
2 det (L)

1
ω < em

√
ω
, then the root of f1(x, y) (mod e) and

f2(x, y) (mod e) also hold over Z. We then take their resultant with respect to
one of the variables to eliminate it and get a univariate equation and solve for
the root in the other variable. It is a well-known technique called the lattice at-
tack. Zhao and Qi [26] used this technique to attack short exponent LSBS-RSA.
Next, we briefly describe their attack.



54 H.-M. Sun et al.

2.3 The Zhao-Qi Attack

Assume that an LSBS-RSA modulus N = pq satisfies p− q = r · 2( 1
2−α)n, where

r is an odd integer. Then,

p+ q = (p− q) + 2q = r · 2( 1
2−α)n + 2q. (3)

Applying (3) to RSA equation yields

ed = k
[
(N + 1)− 2q − r · 2( 1

2−α)n
]

+ 1.

Consider the polynomial

f(x, y, z) = x(A− 2y − az) + 1, (4)

where A = N + 1, and a = 2( 1
2−α)n. Then (x0, y0, z0) = (k, q, r) is a root of

f(x, y, z) (mod e). Define X = Nγ+β−1, Y = N
1
2 , and Z = Nα, then we have

|x0| < X , |y0| < Y , and |z0| < Z, respectively.
Note that f(x, y, z) can be further reduced by multiplying (−a)−1 (mod e) to

eliminate the coefficient of xz. Thus, we transform the equation (4) to

F (x, y, z) = A′x+B′xy + xz + C′ (mod e).

In order to construct the lattice, Zhao and Qi considered the polynomials

gl,i,b (x, y, z) := em−lxiybF l (x, y, z) , for l = 0, ...,m− 1; i = 1, ...,m− l;
b = 0, 1;h′j,l (x, y, z) := em−l(az)jF l (x, y, z) , for l = 0, ...,m and j = 0, ..., t;
h′′j,l (x, y, z) := em−lyjF l (x, y, z) , for l = 0, ...,m and j = 1, ..., t;

(5)
where m and t are two parameters in N. It can be observed that (x0, y0, z0) =
(k, q, r) is a root of gl,i,b(x, y, z), h′j,l (x, y, z), and h′′j,l (x, y, z) modulo em.

Zhao and Qi solved the modular equation (4) by using the lattice reduction
technique shown above. According to their calculation, the sufficient condition
to find (x0, y0, z0) is

β < 1
6α+ 13

12 −
1
3

√
α2 + (6γ + 1)α+ 12γ+1

4 . (6)

This gives the security boundary of the Zhao-Qi attack. In the next section we
revise the Zhao-Qi attack to further raise the above security boundary.

3 The Zhao-Qi Attack Revised

In this section we point out that the boundary of the Zhao-Qi attack can be
further raised by using Corollary 1. Note that , in LSBS-RSA, according to
Corollary 1, LSB1˜( 1

2−α)n(p) can be computed efficiently in polynomial time



Cryptanalysis of Short Exponent RSA 55

in n. We may denote q = q̃ · 2( 1
2−α)n + q0 and replace y by y · 2( 1

2−α)n + q0
in (4). Then, (4) is transformed to

f ′(x, y, z) = x [(A− 2q0)− 2ay − az)] + 1,

where A = N + 1, and a = 2( 1
2−α)n. Then (x0, y0, z0) = (k, q̃, r) is a root of

f ′(x, y, z) (mod e). Note that the size of the root y0 is reduced when compared
with that of f(x, y, z). In fact, since the sizes of q̃ and r are about αn bits, we
may further simplify f ′(x, y, z) to

f ′′(x, y) = x [(A− 2q0) − ay)] + 1 (mod e), (7)

with the root (k, 2q̃+r) (mod e). The problem of solving (7) is similar to the Small
Inverse Problem introduced in 1999 by Boneh and Durfee [3], [4]. However, we
do not deal with this polynomial here, instead of considering another polynomial
which will yield a better boundary. We show the detail in the next section.

4 Proposed Attack

According to Corollary 1, LSB1˜(1−2α)n(p+q) is known to attackers in an LSBS-
RSA system. In this section we take this advantage to further extend the bound-
ary of the revised Zhao-Qi attack. Denote

p+ q = φ · 2(1−2α)n + φ0,

where φ0 = LSB1˜(1−2α)n(p+q), and φ is an unknown number of (2α− 1
2 )n bits.

Thus, the RSA equation can be derived to

ed = k
[
(N + 1 − φ0) −

(
φ · 2(1−2α)n

)]
+ 1.

Consider the modular equation

f∗ (x, y) = x (B − by) + 1 (mod e), (8)

where B = N + 1 − φ0, b = a2 = 2(1−2α)n, then (x0, y0) = (k, φ) is a root
of f(x, y) (mod e). Define X = Nγ+β−1, Y = N2α− 1

2 , we have |x0| < X , and
|y0| < Y . Note that the form of the modular equation (8) is the same as the
form in (7). In particular, the upper bound Y in (8) is much smaller than that
in (7). This is the reason why we use the polynomial (8) instead of using (7)
to attack short exponent LSBS-RSA, because the boundary derived from (8)
will be better than the boundary derived from (7). However, this is not enough.
We further simplify the equation (8) by multiplying (−b)−1 (mod e) (note that
this inverse exists since b is a power of 2 while e is odd). The advantage is that
the coefficient of the leading monomial xy is 1 and hence we remove the powers
of b from the determinant of the lattice and allow larger β while satisfying the
determinant inequality.



56 H.-M. Sun et al.

Consequently, we get the alternative polynomial having (x0, y0) = (k, φ) as a
zero root modulo e, that is

f(x, y) = xy +B′x+ C′ (mod e), (9)

where B′ = B(−b)−1 (mod e) and C′ = (−b)−1 (mod e). We construct the lattice
by considering the polynomials

gi,l (x, y) := xif l (x, y) em−l (mod em), for l = 0, ..., m; i = 0, ..., m− l;
hj,l (x, y) := yjf l (x, y) em−l (mod em), for l = 0, ..., m and j = 1, ..., t.

Take the case m = 3, t = 1, for example. The coefficient matrix for this case is
M =

ijl 1 x xy x2 x2y x2y2x3 x3y x3y2x3y3y xy2 x2y3x3y4

000 e3 e3

100 xe3 e3X
001 fe2 - - e2XY

200 x2e3 e3X2

101 xfe2 - - e2X2Y
002 f2e - - - - - eX2Y 2

300 x3e3 e3X3

201 x2fe2 - - e2X3Y
102 xf2e - - - - - eX3Y 2

003 f3 - - - - - - - - - X3Y 3

010 ye3 e3Y
011 yfe2 - - e2XY 2

012 yf2e - - - - - eX2Y 3

013 yf3 - - - - - - - - - X3Y 4

Let Mx and My denote the matrices with the coefficient vectors of gi,l (x, y) and
hj,l (x, y), respectively. We have

det(Mx) = e
m(m+1)(m+2)

3 ·X m(m+1)(m+2)
3 · Y m(m+1)(m+2)

6

det(My) = e
tm(m+1)

2 ·X tm(m+1)
2 · Y t(m+1)(m+t+1)

2 .
(10)

Applying X = e
γ+β−1

γ , and Y = e
2α−1/2

γ to (10) yields

det(Mx) = e
m(m+1)(m+2)

3 +( γ+β−1
γ ·m(m+1)(m+2)

3 )+( 2α−1/2
γ ·m(m+1)(m+2)

6 )

= e
m(m+1)(m+2)

3 ·(2+ α+β−5/4
γ )

det(My) = e
tm(m+1)

2 +( γ+β−1
γ · tm(m+1)

2 )+( 2α−1/2
γ · t(m+1)(m+t+1)

2 )

= e
tm(m+1)

2 ·(2+ β−1
γ )+( 2α−1/2

γ · t(m+1)(m+t+1)
2 ).

Note that if we only consider the x-shift, i.e., gi,l (x, y), to satisfy the requirement
in Lemma 3 we have to set det(Mx) < emωx , where ωx = (m+1)(m+2)

2 is the
dimension of Mx. Thus, we have

m(m+1)(m+2)
3 ·

(
2 + α+β−5/4

γ

)
< m · (m+1)(m+2)

2 . (11)



Cryptanalysis of Short Exponent RSA 57

Simplifying (11) yields
α+ β < 5

4 −
γ
2 . (12)

Note that for the usual case (α = 1
2 , γ = 1), we may attack RSA when β < 1

4 ,
which achieves the same boundary as the Wiener attack [25].

Moreover, we further include the y-shift, i.e., hj,l (x, y), to our attack. By
setting det (M) = det(Mx) · det(My) < emω, where ω = (m+1)(m+2)

2 + t (m+ 1)
is the dimension of M , we have

m(m+1)(m+2)
3 ·

(
2 + α+β−5/4

γ

)
+ tm(m+1)

2 ·
(
2 + β−1

γ

)
+
(

2α−1/2
γ · t(m+1)(m+t+1)

2

)
< m(m+1)(m+2)

2 + tm (m+ 1),

which leads to

m(m+2)
3 ·

(
1
2 + α+β−5/4

γ

)
+ tm

2 · β−1
γ +

(
2α−1/2

γ · t(m+t+1)
2

)
< 0, (13)

After simplifying the left hand side of (13) as a quadratic polynomial with vari-
able t we get[

2α−1/2
γ

]
·t2+

[
mβ−1

γ + (m+ 1)2α−1/2
γ

]
·t+
[

2m(m+2)
3 (1

2 + α+β−5/4
γ )

]
< 0. (14)

Note that the left hand side of (14) would be minimized at

t =
−
[
m

β−1
γ +(m+1)

2α−1/2
γ

]
2
[

2α−1/2
γ

] = −[m(β−1)+(m+1)(2α−1/2)]
4α−1 = ( 3

2−2α−β)m−2α+ 1
2

4α−1 .

(15)
Plugging (15) in (14) yields[

2α−1/2
2γ

]
·
(

( 3
2−2α−β)m−2α+ 1

2
4α−1

)2
+
[
mβ−1

2γ + (m+ 1) 2α−1/2
2γ

]
· ( 3

2−2α−β)m−2α+ 1
2

4α−1

+
[

2m(m+2)
3 ( 1

2 + α+β−5/4
γ )

]
< 0.

(16)
Multiplying (16) by 2γ yields

(
2α− 1

2

)
·
(

( 3
2−2α−β)m−2α+ 1

2
4α−1

)2
+
[
m (β − 1) + (m+ 1)

(
2α− 1

2

)]
· ( 3

2−2α−β)m−2α+ 1
2

4α−1

+ 2m(m+2)
3 (γ

2 + α+ β − 5
4 ) < 0.

After simplifying the first term and the second term we have

1
2(4α−1) ·

(
(3
2 − 2α− β)m− 2α+ 1

2

)2 − 1
4α−1 ·

(
(3
2 − 2α− β)m− 2α+ 1

2

)2
+
[

2m(m+2)
3 (γ

2 + α+ β − 5
4 )
]
< 0.



58 H.-M. Sun et al.

Combining the first term and the second term we get

−1
2(4α−1) ·

(
(3
2 − 2α− β)m− 2α+ 1

2

)2 +
[

2m(m+2)
3 (γ

2 + α+ β − 5
4 )
]
< 0

which is simplified to

2m(m+2)
3 (γ

2 + α+ β − 5
4 ) · 2 (4α− 1)) <

(
(3
2 − 2α− β)m− 2α+ 1

2

)2 .

Thus, we get the inequality

(2γ + 4α+ 4β − 5) (4α− 1) <
3
(
( 3
2−2α−β)m−2α+1

2

)2

m(m+2) =
3
(
( 3
2−2α−β)− 2α

m + 1
2m

)2

1+ 2
m

.
(17)

As m goes to infinity, (17) becomes

(2γ + 4α+ 4β − 5) (4α− 1) < 3
(3

2 − 2α− β
)2. (18)

We give more discussions in the next section.

5 Further Discussions

5.1 The Summary of Our Attack

In conclusion, the boundary that our attack can succeed is

β < 2
3α+ 5

6 −
4
3

√
α2 + (3

2γ −
1
2 )α − 6γ−1

16 ,

where 1
4 ≤ α ≤ 1

2 . For the case γ = 1, we have the boundary

β < 2
3α+ 5

6 −
4
3

√
α2 + α− 5

16 . (19)

The curve of (19) is shown in Fig 1. We also show the other attacks, which
includes the Wiener attack, Boneh-Durfee attack, and the Analogue Fermat
factoring. As can be seen in Fig 1, if p and q share the n

4 least significant bits at
least, i.e., α ≤ 0.25, the Analogue Fermat factoring can factor N efficiently. The
Wiener attack and the Boneh-Durfee attack (short for B-D attack) work in the
case β < 1

4 and β < 0.284, respectively. We should point out in B-D attack [3],
[4], Boneh and Durfee use the geometrically progressive matrices to eliminate
the larger terms in the coefficient matrix, and thus the upper bound is further
extended from d < N0.284 to d < N0.292. This technique can also be applied to
our method but we do not discuss it here.

5.2 Experiments

We have performed the experiments on a server containing Intel processors of
2.4 GHz Core 2 Quad, with 2 GB Memory. The lattice basis reductions are done
using Shoup’s NTL [14]. We have to mention that, like the Boneh-Durfee attack,



Cryptanalysis of Short Exponent RSA 59

Fig. 1. Insecure Region of α and β for which LSBS-RSA with γ = 1

our attack is also heuristic since the resultant computations may fail even with
low probability. Also, we just experimented for the samples on LSBS-RSA with
short private exponent, and e ≈ N (i.e., γ ≈ 1). Note that the size of 1024
bits, or 2048 bits for the modulus are often used in the current computational
environment. However, we just experimented for the size of 128 bits for the
reason of simplicity. The experimental results are shown in the following.

n α d β m t
Rank of
Lattice

Running
Time

Advantage over
Z-Q Attack

128 bits 0.275 90 bits 0.704 5 12 93 36 sec 43 bits
128 bits 0.300 77 bits 0.607 5 7 63 9.5 sec 31 bits
128 bits 0.350 61 bits 0.478 5 3 39 3.0 sec 17 bits
128 bits 0.425 45 bits 0.350 5 2 33 0.7 sec 5 bits

The entries for β in the table are the tested values for which the attacks suc-
ceeded. As can be seen in the last column of the table, our attacks achieved the
higher boundary than the one of the Zhao-Qi attack. In addition, we have to
point out that considering LSBS-RSA with γ < 1 (i.e., e << N) and β < 1
(i.e., d << N) is not practical. Up to now there is no research about designing
LSBS-RSA with short private and public exponents simultaneously. The most
related work for designing short private and public exponents RSA was proposed
by Sun et. al.[16], [17], but the modulus primes in their key-generation schemes
cannot be determined as desired. Hence, it seems meaningless to cryptanalyze



60 H.-M. Sun et al.

Table 1. The upper bound or lower bound of β for which our attack can succeed in
LSBS-RSA

γ = logN(e) γ = 1.0 γ = 0.9 γ = 0.86 γ = 0.8 γ = 0.7 γ = 0.6 γ = 0.55
α = 0.5 0.284 0.323 0.339 0.364 0.407 0.452 0.476
α = 0.4 0.437 0.468 0.480 0.500 0.534 0.571 0.590
α = 0.3 0.662 0.681 0.688 0.700 0.721 0.743 0.754
α = 0.25 1 1 1 1 1 1 1

the security of short exponent LSBS-RSA with γ < 1. Even so, in Table 1 we
still summarize the largest β for which the proposed attack can succeed.

5.3 Further Improvement

To further extend the boundary of our attack, we may focus on the approxima-
tion to p + q. Generally, p + q is estimated as 2�

√
N�. Sun, Wu, & Chen [18]

proposed a method, called EPF, to estimate the most significant bits of p + q.
With this technique, we may reduce the quantity of Y in (8) and this may con-
duct to a better boundary of LSBS-RSA for security. More precisely, suppose
that p+ q is estimated as φE , with the error |(p+ q) − φE | < 2m, where m < n

2 ,
then the RSA equation can be represented as

ed = x [(N + 1)− (φE + y)] + 1,

where x0 = k, and y0 < 2m are two unknown numbers. The above equation
gives us a motivation to combine de Weger’s result [24] with our attack. Next,
we briefly describe it.

5.4 LSBS-RSA with Small Prime Difference

Recall that p− q = r ·2( 1
2−α)n, for some integer r. In general, the quantity of r is

about 2αn. Here we consider the case that bit-length of r is much smaller than αn.
This means p and q share a number of the most significant bits. The cryptanalysis
of this RSA modulus had been analyzed by de Weger [24]. We suppose that p
and q share the αM most significant bits, which implies p − q < 2

n
2 −αM , and

share the αL least significant bits, which implies p−q = rL ·2αL for some integer
rL. Thus, p− q can be represented as

p− q = rL · 2αL , where rL < 2
n
2 −(αM+αL).

And then, p+ q can be computed from the identity:

(p+ q)2 = (p− q)2 + 4N = r2L · 22αL + 4N .

Using the representation of p + q above may yield a better boundary for the
lattice attack on this kind of RSA variant. However, we do not show the detail
here but leave it in the full version.



Cryptanalysis of Short Exponent RSA 61

6 Conclusion and Future Work

In this paper, we give a revised version of the Zhao-Qi attack to further raise
the security boundary of LSBS-RSA. In addition, we also propose a method by
considering another polynomial to attacking LSBS-RSA, which conducts to a
better result compared with the Zhao-Qi attack. Our result shows that LSBS-
RSA is getting more vulnerable as smaller exponents or more number of primes
sharing bits.

An interesting question is how to design an LSBS-RSA with short public and
private exponents simultaneously. Note that in Sun et. al.’s schemes [16], [17],
we cannot choose modulus primes randomly in order to produce desired public
and private exponents. Up to now it is still an open problem to design such
scheme to achieve balanced short exponents RSA with prime sharing a large
number of least (or most) significant bits. Conversely, the cryptanalysis of such
RSA variant, if it exists, is worth to research as well.

Although LSBS-RSA is beneficial to the computational efficiency in several
applications, such as server-aided signature generation [6], we have to indicate
using LSBS-RSA also raises the risk in the security [21], [22], [24], [26]. We
believe it is a trade-off between the efficiency and the security level, and thus
one should be more careful in using such RSA variants.

Acknowledgment

The work was supported in part by the National Science Council, Taiwan, under
Contract No. NSC 96-2628-E-007-025-MY3, the Singapore National Research
Foundation under Research Grant NRF-CRP2-2007-03, the Singapore Ministry
of Education under Research Grant T206B2204 and the Australian Research
Council under ARC Discovery Project DP0665035. Ron Steinfeld’s work was
supported by a Macquarie University Research Fellowship.

References

1. Boneh, D., Durfee, G., Frankel, Y.: An Attacks on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

2. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Private Key Given a
Small Fraction of its Bits, Full version of the work from Asiacrypt 1998 (1998),
http://crypto.stanford.edu/∼dabo/abstracts/bits of d.html

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

5. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

http://crypto.stanford.edu/~dabo/abstracts/bits_of_d.html


62 H.-M. Sun et al.

6. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

7. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

8. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations Revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

9. Coron, J.-S.: Finding Small Roots of Bivariate Integer Polynomial Equations: A
Direct Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–
394. Springer, Heidelberg (2007)

10. Durfee, G., Nguyen, P.Q.: Cryptanalysis of the RSA Schemes with Short Secret
Exponent form Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 1–11. Springer, Heidelberg (2000)

11. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

12. Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. of
Computing 17, 336–341 (1988)

13. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

14. Shoup, V.: NTL: A Library for doing Number Theory, http://shoup.net/ntl
15. Lenstra, A., Lenstra, H., Lovasz, L.: Factoring Polynomials with Rational Coeffi-

cients. Mathematiche Annalen 261, 515–534
16. Sun, H.-M., Yang, W.-C., Laih, C.-S.: On the design of RSA with short secret

exponent. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS,
vol. 1716, pp. 150–164. Springer, Heidelberg (1999)

17. Sun, H.-M., Yang, C.-T.: RSA with balanced short exponents and its application
to entity authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
199–215. Springer, Heidelberg (2005)

18. Sun, H.-M., Wu, M.-E., Chen, Y.-H.: Estimating the Prime Factors of an RSA
Modulus and an Extension of the Wiener Attack. In: Katz, J., et al. (eds.) ACNS
2007. LNCS, vol. 4521, pp. 116–128. Springer, Heidelberg (2007)

19. Sun, H.-M., Wu, M.-E., Wang, H., Guo, J.: On the Improvement of the BDF
Attack on LSBS-RSA. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 84–97. Springer, Heidelberg (2008)

20. Rivest, R., Shamir, A., Aldeman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

21. Steinfeld, R., Zheng, Y.: An Advantage of Low-Exponent RSA with Modulus
Primes Sharing Least Significant Bits. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 52–62. Springer, Heidelberg (2001)

22. Steinfeld, R., Zheng, Y.: On the Security of RSA with Primes Sharing Least-
Significant Bits. Appl. Algebra Eng. Commun. Comput. 15(3-4), 179–200 (2004)

23. Verheul, E.R., van Tilborg, H.C.A.: Cryptanalysis of less short RSA secret expo-
nents. Appl. Algebra Eng. Commun.

http://shoup.net/ntl


Cryptanalysis of Short Exponent RSA 63

24. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13, 17–28 (2002)

25. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Informa-
tion Theory 36(3), 553–559 (1990)

26. Zhao, Y.-D., Qi, W.-F.: Small Private-Exponent Attack on RSA with Primes Shar-
ing Bits. In: Garay, J., et al. (eds.) ISC 2007. LNCS, vol. 4779, pp. 221–229.
Springer, Heidelberg (2007)



Efficient and Short Certificateless Signature

Raylin Tso1,�, Xun Yi2, and Xinyi Huang3,��

1 Department of Computer Science, National Chengchi University, Taiwan
raylin@cs.nccu.edu.tw

2 School of Computer Science and Mathematics, Victoria University, Australia
Xun.Yi@vu.edu.au

3 Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Australia
xh068@uow.edu.au

Abstract. A certificateless signature (CLS) scheme with short signa-
ture size is proposed in this paper. Our scheme is as efficient as BLS
short signature scheme in both communication and computation, and
therefore turns out to be more efficient than other CLS schemes pro-
posed so far. We provide a rigorous security proof of our scheme in the
random oracle model. The security of our scheme is based on the k-CAA
hard problem and a new discovered hard problem, namely, modified k-
CAA problem. Our scheme can be applied to systems where signatures
are typed in by human or systems with low-bandwidth channels and/or
low-computation power, such as PDAs or cell phones.

Keywords: Bilinear pairing, certificateless signature, random oracle,
short signature.

1 Introduction

Nowadays, the main difficulty in developing secure systems based on public key
cryptography is the deployment and management of infrastructures to support
the authenticity of cryptographic keys. The general approach to solve this prob-
lem is to use a Public Key Infrastructure (PKI) in which a trusted authority,
called Certification Authority (CA), issues certificates to bind users and their
public keys. However, the PKI is costly to use as it involves certificate revocation,
storage, distribution, and verification.

In order to overcome the above mentioned problem, identity-based (ID-based)
cryptography was firstly introduced by Shamir [19] in 1984. In an ID-based cryp-
tosystem, one can use its unique identifier (e.g., names or e-mail addresses) as
the public key. The user’s identifier is publicly known and thus does not need
certificates to prove its authenticity. Consequently, the problems associated with

� Supported by National Science Council of Taiwan (NSC 97-2218-E-004-002).
�� Supported by the National Natural Science Foundation of China (No. 60673070) and

the Natural Science Foundation of Jiangsu Province (No. BK2006217).

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 64–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Efficient and Short Certificateless Signature 65

certificates can be eliminated. However, ID-based cryptosystems have an inher-
ent key escrow issue as a third party “Private Key Generator” (PKG) generates
the private keys for all users in the system. Therefore, the PKG must be fully
trusted in ID-based cryptosystems.

Certificateless cryptography, firstly introduced by Al-Riyami and Paterson [2]
in 2003, intends to solve the key escrow issue inherent in ID-based cryptography,
and meanwhile to eliminate the use of certificates as in the conventional PKI.
In a certificateless cryptosystem, private keys of users are generated by not only
the PKG but also users themselves. In other words, PKG only issues a partial
private key to each user while the user independently generates its additional
public/secret key pair. Consequently, the PKG is unable to obtain secret keys of
users. The cryptographic operations in certificateless system can be performed
successfully only when both the partial private key and the secret key are known.
In this way, the key escrow problem can be overcome. Following Al-Riyami and
Paterson’s pioneering work [2], many certificateless schemes have been proposed
in recent years, such as [1,10,12,15,16,21,22,23,25] and etc..

1.1 Motivations

In the definition of the security model for certificateless signature (CLS) schemes,
some papers (e.g., [1,14,15,17]) assume that the adversary should be allowed to
obtain signatures signed with false public keys chosen by the adversary. But, in
real world, the signatures that a “realistic” adversary can obtain are generated
by a signer using the partial private key and the secret key corresponding to
its original public key. Therefore, the adversary defined in those security models
seems to enjoy more power than it could have in the real world. This assump-
tion provides a higher security for the schemes on one hand but also limits the
efficiency of the schemes on the other hand. This is because CLS schemes with a
high security level usually sacrifice some efficiency in computation and/or com-
munication and may not be practical for systems with low-bandwidth channels
and/or low-computation power, such as PDAs or cell phones.

Except for the scheme proposed by Huang et al. [15], no secure CLS scheme
has a short size of signature, although many short signatures in traditional PKI
have been proposed [8,9,24]. As mentioned in [6], there are several important
practical reasons for the desirableness of short signatures. For example, battery
life is the major limitation on wireless devices such as PDAs, cell phones, RFID
chips and sensors. Communicating even one bit of data uses significantly more
power than executing one 32-bit instruction [3]. Reducing the number of bits to
communicate saves power and is important to increase battery life. Also, in many
settings, communication is not reliable, and thus the number of bits one has to
communicate should be kept as few as possible. This inspired us to propose a
more efficient certificateless short signature scheme.

1.2 Our Contributions

In this paper, on the basis of BLS short signature scheme [9], an efficient certifi-
cateless signature scheme with short signature size is proposed. Our scheme is



66 R. Tso, X. Yi, and X. Huang

as efficient as BLS short signature scheme (which is the traditional PKI model)
in both communication and computation, and turns out to be more efficient
than other CLS schemes proposed so far. This is achieved at the cost of stronger
complexity assumptions.

In addition, as mentioned in [15], the security model defined in some CLS
schemes (e.g., [16,21]) assume that, when an adversary queries the oracle Public-
Key-Replace to replace a real public key with a false public key chosen by itself,
the adversary is required to provide both the false public key and the correspond-
ing secret value as the input. This is unreasonable since an adversary may pick
a random public key for which the corresponding secret value is unknown even
for himself. In other words, this definition may not cover the case in which an
adversary may successfully forge a new signature with a false public key without
knowing the corresponding secret value (to the false public key). Our definition
for CLS scheme does not have such a problem and an adversary is not required
to provide a secret value corresponding to a false public key as the input to the
oracle Public-Key-Replace.

Based on the k-CAA problem, we define a new hard problem named “mod-
ified k-CAA problem”. Assuming the hardness of these problems, we provide a
rigorous security proof for our scheme in the random orale model .

The rest of this paper is organized as follows. In Section 2, we give some
preliminaries (including the new discovered hardness assumption) which will be
required throughout this paper. Section 3 is the presentation of our certificateless
short signature scheme and in Section 4, we give the security proofs for our new
scheme. Section 5 gives the performance comparison of our scheme with other
schemes and the conclusion is given in Section 6.

2 Preliminaries

Before presenting our results, we first briefly review the notion of certificateless
signature and its security definition. We will also review the definition for groups
equipped with a bilinear map, and precisely state the hardness assumptions.

2.1 Certificateless Signatures

Following the definition in [2], a certificateless signature scheme is specified
by seven randomized algorithms: Setup, Partial-Private-Key-Extract, Set-
Secret-Value, Set-Private-Key, Set-Public-Key, Sign and Verify.
Setup. This algorithm takes as input a security parameter 1k and returns the

system parameters params and the master secret key msk. Usually, this al-
gorithm is run by the KGC. We assume throughout that params are publicly
and authentically available, but that only the KGC knows msk.

Partial-Private-Key-Extract. This algorithm takes the system parameter
params, the master secret key msk and an identity ID as input. It returns
a partial private key DID . Usually, this algorithm is run by the KGC and its
output is transported to the identity ID over a confidential and authentic
channel.



Efficient and Short Certificateless Signature 67

Set-Secret-Value. This algorithm takes as input the system parameter params
and an identity ID as input and outputs a secret value xID . This algorithm
is run by the identity ID for itself.

Set-Private-Key. This algorithm takes the system parameter params, a par-
tial private key DID and a secret value xID of an identity ID as input. The
value xID is used to transform DID into the (full) private key SKID . The
algorithm returns SKID . This algorithm is run by the identity ID for itself.

Set-Public-Key. This algorithm takes the system parameter params, an iden-
tity ID and the identity’s private key PKID as input. It outputs the public
key PKID for the identity ID .

Sign. This algorithm takes the system parameter params, an identity ID , the
private key SKID of ID and a messageM as input. It outputs a certificateless
signature σ.

Verify. This algorithm takes the system parameter params, an identity ID , the
identity’s public key PKID and a message/signature pair (M,σ) as input.
It output true if the signature is correct, or false otherwise.

2.2 Security Model

In this section, we discuss the definition of the security for a certificateless sig-
nature scheme.

For certificateless cryptosystems, the widely accepted notion of security was
defined by Al-Riyami and Paterson in [2]. According to their definitions as well as
the definitions in [25], there are two types of adversary with different capabilities:
Type I Adversary: This type of adversary AI models a dishonest user who
does not have access to the master key msk but has the ability to replace the
public key of any entity with a value of his choice.
Type II Adversary: This type of adversary AII models a malicious KGC who
has access to the master key msk but cannot perform public keys replacement1.

Generally, there are five oracles which can be accessed by the adversaries
according to the game specifications which will be given later.

1. Create-User: On input an identity ID ∈ {0 , 1}∗, if ID has already been
created, nothing is to be carried out. Otherwise, the oracle runs the al-
gorithms Private-Key-Extract, Set-Secret-Value, Set-Public-Key to
obtain the partial private key DID , secret value xID and public key PKID .
In this case, ID is said to be created. In both cases, PKID is returned.

2. Public-Key-Replace:2 On input an identity ID and a user public key
PK ′

ID , the original user public key of ID is replaced with PK ′
ID if ID has

been created. Otherwise, no action will be taken.
1 It is important that in certificateless cryptosystems, KGC must be semi-trusted and

cannot perform the public key replacement. This is because that any adversary who
knows the master key can impersonate anyone if he is allowed to replace the public
key of the entity.

2 Different from the security model defined in [16,21], in this oracle, an adversary is
not required to provide the secret value x′

ID which is used to generated the public
key PK′

ID .



68 R. Tso, X. Yi, and X. Huang

3. Secret-Value-Extract: On input an identity, it returns the corresponding
user secret key xID if ID has been created. Otherwise, returns a symbol ⊥.
Note that xID is the secret value associated with the original public key
PKID . This oracle does not output the secret value associated with the
replaced public key PK ′

ID .
4. Partial-private-Key-Extract: On input an identity ID , it returns the par-

tial private key DID if ID has been created. Otherwise, returns a
symbol ⊥.

5. Sign: On input an identity ID and a messagem ∈ {0, 1}∗, the signing oracle
proceeds in one of the both cases below.
• If ID has not been created, returns ⊥.
• If ID has been created, returns a valid signature σ such that true ←

Veify(m,σ, ID ,PKID ). Here PKID is the public key returned from the
oracle Create-User.

The standard notion of security for a signature scheme is called existential un-
forgeability against adaptive chosen message attack defined by Goldwasser, Mi-
cali and Revist [11]. To define the existential unforgeability of a certificateless
signature against Type I adversary AI and Type II adversary AII , we define
two games, one for AI and the other for AII .

Game 1: This game is executed between a challenger C and an adaptive chosen
message and chosen identity adversary AI .
Setup. The challenger C runs the algorithm Setup of the certificateless signa-

ture scheme to obtain both the public parameter params and the master
secret key msk. The adversary AI is given params but the master secret
key msk is kept by the challenger.

Queries. AI adaptively access all the oracles defined in Section 2.2 in a poly-
nomial number of times.

Forgery. Eventually, AI outputs a forgery (ID∗,PKID∗ ,m∗, σ∗) and wins the
game if the following conditions hold true:

1. true← Verify(params, ID∗,PKID∗ ,m∗, σ∗).
2. (ID∗,m∗) has never been submitted to the oracle Sign.
3. ID∗ has never been submitted to the oracle Partial-Private-Key-

Extract and Secret-Value-Extract.

Definition 1. Define AdvAI to be the probability that a Type I adaptively cho-
sen message and chosen identity adversaryAI wins in the above game, taken over
the coin tosses made by AI and the challenger. We say a certificateless signature
scheme is secure against Type I attack, if, for all probabilistic polynomial-time
(PPT) adversary AI , the success probability AdvAI is negligible.

Game 2: This game is executed between a challenger C and an adaptive chosen
message and chosen identity adversary AII .
Setup. The challenger C runs the algorithm Setup of the certificateless signa-

ture scheme to obtain both the public parameter params and the master
secret key msk. The adversary AII is given both params and msk.



Efficient and Short Certificateless Signature 69

Queries. AII adaptively access all the oracles defined in Section 2.2 in a poly-
nomial number of times.

Forgery. Eventually, AII outputs a forgery (ID∗,PKID∗ ,m∗, σ∗) and wins the
game if the following conditions hold true:

1. true← Verify(params, ID∗,PKID∗ ,m∗, σ∗).
2. (ID∗,m∗) has never been queried to the oracle Sign.
3. ID∗ has never been submitted to the oracle Secret-Value-Extract.

Definition 2. Define AdvAII to be the probability that a Type II adaptively
chosen message and chosen identity adversary AII wins in the above game,
taken over the coin tosses made by AII and the challenger. We say a certifi-
cateless signature scheme is secure against Type II attack, if, for all probabilis-
tic polynomial-time (PPT) adversary AII , the success probability AdvAII is
negligible.

Definition 3. A certificateless signature scheme is existentially unforgeable
against adaptive chosen message and chosen identity attack if it is secure against
both Type I and Type II attacks defined above.

2.3 Bilinear Groups and Complexity Assumptions

Let G1,G2 be two multiplicative cyclic groups of order p for some large prime
p. Our scheme makes use of the bilinear map ê : G1 × G1 → G2 between these
two groups. The bilinear map should be satisfied with the following properties:

1. Bilinear: A map ê : G1 ×G1 → G2 is bilinear if ê(ga, hb) = ê(g, h)ab for all
g, h ∈ G1 and a, b ∈ Z∗

p.
2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity

in G2. Observe that since G1,G2 are groups of prime order, this implies that
if g is a generator of G1, then ê(g, g) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(g, h) for any
g, h ∈ G1.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map. We can make this map using the Weil pairing or the Tate pairing
[4,5,9]

Next, we describe the complexity assumptions which are required for the
security proof of our scheme.

We first introduce a problem given by Mitsunari et al. [18] which is called
k-CAA (Collusion Attack Algorithm with k traitors) problem and then give a
modified problem.

Definition 4. k-CAA Problem [18]
For x, h1, · · · , hk ∈ Z∗

p, and a generator g of G1. Given g, gx and k pairs (h1,

g(x+h1)−1
), · · · , (hk, g

(x+hk)−1
), output a new pair (h∗, g(x+h∗)−1

) for some h∗ /∈
{h1, · · · , hk}.



70 R. Tso, X. Yi, and X. Huang

The k-CAA problem is believed to be hard. Mitsunari et al. firstly introduced this
problem and gave a traitor tracing scheme [18] based on this problem. Although
their application to tracing traitors is proved by Tô et al. [20] to be insecure,
the k-CCA problem still remains to be hard without broken. Zhang et al. [24]
recently gave a secure and efficient signature scheme based on the same problem.

In addition to the k-CAA problem, the security of our scheme also bases on
a modified version of the original k-CAA problem. We call it as the Modified
k-CAA Problem which is defined as follows:

Definition 5. Modified k-CAA Problem
For randomly picked x, a, b, h1, · · · , hk ∈ Z∗

p, and a generator g of G1. Let g1 =

gab �= g. Given g, gx, ga, gb, gbx and k pairs (h1, g
(x+h1)−1

1 ), · · · , (hk, g
(x+hk)−1

1 ),
output either a new pair (h∗, g(x+h∗)−1

1 ) for some h∗ /∈ {h1, · · · , hk} or g1.

Note that in the above definition, g1 is not given to the problem. If we define
g1 = g in the input, then ga, gb and gbx are useless and can be ignored. In this
case, the problem is to find a new pair (h∗, g(x+h∗)−1

) for some h∗ /∈ {h1, · · · , hk}.

3 The Proposed Certificateless Short Signature Scheme

In this section, we will describe our certificateless short signature scheme. It
consists of the following algorithms:
Setup: Let (G1,G2) be bilinear groups of some prime order p ≥ 2k, k be the

security parameter of the scheme. ê : G1 × G1 → G2 is an admissible bi-
linear pairing. Let H0 : {0, 1}∗ → G∗

1, H1 : {0, 1}∗ → Z∗
p be two secure

cryptographic hash functions. KGC chooses a random number s ∈ Z∗
p and

an arbitrary generator g ∈ G1. It sets Ppub = gs, publishes params =
{G1,G2, g, ê, H0, H1, Ppub} and keeps the master secret key msk = s
secretly.

Partial-Private-Key-Extract: Given an entity’s identity ID ∈ {0 , 1}∗, KGC
sets QID = H0(ID) and computes the entity’s partial private key DID =
Qs

ID . KGC transmits DID to ID over a confidential and authentic channel.
Set-Secret-Value: The entity ID chooses a random number xID ∈ Z∗

p.
Set-Private-Key: The entity ID sets his private key as SKID = (DID , xID ).
Set-Public-Key: Given xID , the entity ID computes the public key PKID =

(PK1, PK2) = (gxID , QxID

ID ).
Sign: To sign a message m ∈ {0, 1}∗, the entity ID first sets h = H1(m||ID ||

PKID ) and then computes the signature σ = D
(xID+h)−1

ID .
Verify: Given a pair (m,σ) and ID ’s public key PKID = (gxID , QxID

ID ), any
verifier first checks the equation ê(PK1, QID ) = ê(PK2, g). If it holds, then
computes h = H1(m||ID ||PKID ) and checks the equation

ê(σ, PK1 · gh) ?= ê(H0(ID),Ppub).

If the equality holds, outputs true, otherwise, outputs false.



Efficient and Short Certificateless Signature 71

Correctness: If σ is a valid signature on m, then the correctness holds since

ê(σ, PK1 · gh)

= ê(D(xID+h)−1

ID , gxID · gh) = ê(H0(ID)s(xID+h)−1
, gxID+h)

= ê(H0(ID), g)s(xID+h)−1 (xID+h) = ê(H0 (ID), g)s

= ê(H0(ID), gs) = ê(H0 (ID),Ppub).

4 Security Proofs

Theorem 1. Unforgeability against Type I Adversary: If there exists a
Type I adaptively chosen message and chosen ID adversary AI who can ask at
most qC Create-User queries, qKEx Partial-Private-Key-Extract queries,
qV Ex Secret-Value-Extract queries and qS sign queries, respectively, and
can break the proposed scheme in polynomial time with success probability
ε, then there exists an algorithm F which, using AI as a black box, can solve
the modified k-CAA problem [Definition 5] ( where k ≥ qS and is in propor-
tion to the number of the H1-hash queries) with probability Advmk−CAA

F ≥
(1 − 1

qC
)qP KEx+qV Ex(1 − 1

qS+1 )qS 1
qC(qS+1)ε.

Proof: If there exists an adversary AI who can break the unforgeability of the
proposed scheme via Type I attack, then, we can construct another adversary F
such that F can use AI as a black-box and solve the modified k-CAA problem.

Let g be a generator of G1, x, a, b be three random numbers of Z∗
p and g1 =

gab ∈ G1. Let h1, · · · , hk ∈ Z∗
p be k random numbers. F is given the challenge

{g, gx, ga, gb, gbx, (h1, g
(x+h1)−1

1 ), · · · , (hk, g
(x+hk)−1

1 )}. The purpose of F is either
to find a new pair (h∗, g(x+h∗)−1

1 ) for some h∗ /∈ {h1, · · · , hk} or to find g1, which
are the solutions to the modified k-CAA problem.
Setup: In order to solve the problem, F utilizes AI as a black-box. To get the

black-box AI run properly, F will simulate the environments of the proposed
scheme and the oracles which AI can access. In this proof, we regard the
hash functions H0, H1 as random oracles. F starts by picking an admissible
bilinear pairing ê : G1 × G1 → G2, and sets Ppub = ga. F then sends
params = (G1,G2, ê, g, Ppub) to AI and allows AI to run.

Due to the ideal randomness of the H1-hash, we may assume that AI is
well-behaved in the sense that it always requests a H1-hash of m||ID ||PKID

before it requests a signature for m signed by ID ’s public key PKID . In
addition, it always requests a H1-hash of m∗||ID∗||PKID∗ that it outputs as
its forgery. It is trivial to modify any adversary-algorithm AI to have this
property.

Query: At any time, AI is allowed to access the following oracles in a polyno-
mial number of times. These oracles are all simulated by F .
1. Create-User: AI can query this oracle by given an identity IDi . In re-

sponse to these queries,F first chooses a random number t ∈ {1, · · · , qC}.



72 R. Tso, X. Yi, and X. Huang

(1) If i �= t, F chooses di, xi ∈R Z∗
p and sets H0(IDi) = gdi , PKIDi =

(PK(IDi ,1 ), PK(IDi ,2 )) = (gxi , gdixi). In this case, the corresponding
partial private key of the entity IDi is DIDi = H0(IDi)a = gadi =
Pdi

pub and the secret value is xIDi = xi.
(2) If i = t, F setsH0(IDt) = gb and PKIDt = (PK(IDt ,1 ), PK(IDt ,2 )) =

(gx, gbx). In this case, F will set DIDt = xIDt = ⊥ which means that
it cannot compute the secret value and the partial private key of IDt .

In both cases, returns H0(IDi) and PKIDi .
2. Partial-Private-Key-Extract: At any time, AI can query the oracle

by given an identity IDi . F outputs a symbol ⊥ if IDi has not been
created. If IDi has been created and i �= t, F returns DIDi = gadi .
Otherwise, F returns failure and terminates the simulation.

3. Public-Key-Replace:AI can request to replace public key PKIDi of an
entity IDi with new public key PK ′

IDi
chosen by AI itself. F replaces the

original public key PKIDi with PK ′
IDi

if IDi has been created. Otherwise,
outputs ⊥. Here, to replace a public key, the secret value corresponding
to the new public key is not required.

4. Secret-Value-Extract: Given IDi chosen by AI , outputs ⊥ if IDi has
not been created. If IDi has been created and i �= t, F returns xIDi to AI .
Otherwise, i = t and F reports failure and terminates the simulation.

5. H1 Queries: AI can query the random oracle H1 at any time on an
input ωi = (ml||IDj ||PKIDk

). For i-th H1 query asked by AI on input
ωi, F first checks if IDj = IDt and PKIDk

= PKIDt or not. Here PKIDt

is the original public key.
• If IDj = IDt and PKIDk

= PKIDt , then F first flips a biased coin
which outputs a value ci = 1 with probability ζ, and ci = 0 with
probability 1 − ζ (the value of ζ will be optimized later).
(1) If ci = 1,F picks a random value h′i ∈ Z∗

p where h′i /∈ {h1, · · · , hk}
and responds h′i to AI as the value of H1(ωi).

(2) If ci = 0, F returns a value h′′i ∈R {h1, · · · , hk} as the output of
H1(ωi) where h′′i must be a fresh value which means that it has
not been assigned as an output of H1 queries before.

• Otherwise, F picks and responds with a random value µi ∈ Z∗
p.

In either cases, F records (ωi, h
′
i, ci), (ωi, h

′′
i , ci) or (ωi, µi) to a H1-List

which is initially empty.
6. Sign: For each sign query on an input (ml, IDj ), output ⊥ if IDj has not

been created. For any input (ml, IDj ) with IDj which has already been
created, since we assume that AI is well-behaved, we know that AI has
already queried the random oracleH1 on the input ωi = (ml||IDj ||PKIDj ).
• If IDj �= IDt , F uses the private key (xIDj , DIDj ) of IDj and µi =
H1(ωi) on the H1-List to generate the valid signature σi for the
message ml and the identity IDj .

• If IDi = IDt , then, F first checks the H1-List.
(1) If ci = 1, F reports failure and terminates the simulation.
(2) Otherwise, ci = 0 and h′′i = H1(ml||IDt ||PKIDt ) is on the H1-

List. For easy of description, we assume h′′i = hi ∈ {h1, · · · , hk}.



Efficient and Short Certificateless Signature 73

F then returns σi = g
(x+hi)−1

1 . Note that

ê(σi, PK(IDt ,1 ) · ghi) = ê(g(x+hi)−1

1 , gx · ghi) = ê(g1, g)

= ê(gab, g) = ê(gb, ga) = ê(H0(IDt),Ppub).

Therefore, σi is a valid signature on ml and IDt .
Forgery: After all the queries, AI outputs a forgery (ID∗,PKID∗ = (PK(ID∗,1 ),

PK(ID∗,2 )),m∗, σ∗) and wins the game.
If σ∗ is a valid forgery, then h∗ = H1(m∗||ID∗||PKID∗) which is on the H1-
List, and ê(σ∗, PK(ID∗,1 )·gh∗

) = ê(H0(ID∗),Ppub) where PKID∗ = gx∗
may

be a new public key replaced by AI or the original public key generated by
the oracle Create-User. In addition, ê(PK(ID∗,1 ), QID∗) = ê(PK(ID∗,2 ), g)
if AI wins the game. If ID∗ �= IDt , then F outputs failure and terminates
the simulation. Otherwise, ID∗ = IDt and F will check the H1-List.
(1) If c∗ = 0, F outputs failure and terminates the simulation.
(2) Otherwise, c∗ = 1 and h∗ /∈ {h1, · · · , hk}. If (PK(ID∗,1 ), PK(ID∗,2 )) =

(PK(IDt ,1 ), PK(IDt ,2 )) is the original public key generated by the oracle,

then, F outputs a new pair (h∗, σ∗) = (h∗, g(x+h∗)−1

1 ) which will be the
solution to the modified k-CAA problem. If (PK(ID∗,1 ), PK(ID∗,2 )) is a
new public key replaced by AI , then, using the knowledge of exponent
assumption introduced in [7,13], F can either extract x∗ if (PK(ID∗,1 ),

PK(ID∗,2 )) = (g∗, gbx∗
) is generated from (g, gb) or extract r if

(PK(ID∗,1 ), PK(ID∗,2 ))=((gx)r, (gbx)r) is generated from (gx, gbx). Con-
sequently, g1 = (σ∗)(x

∗+h∗) can be computed if x∗ extracted or a new
pair (h′, g(x+h′)−1

1 ) = (h∗/r, (σ∗)r) can be found if r extracted, which is
also the solution to the modified K-CAA problem.

It remains to compute the probability that F solves the modified k-CAA prob-
lem. Actually, F succeeds if:

Λ1 : F does not abort during the simulation.
Λ1 : σ∗ is a valid forgery on (ID∗,PKID∗ ,m∗).
Λ1 : ID∗ = IDt and c∗ = 1.

The advantage of F is AdvBCk−CAA
F = Pr[Λ1 ∧ Λ2 ∧ Λ3] = Pr[Λ1] · Pr[Λ2|Λ1] ·

Pr[Λ3|Λ1 ∧ Λ2]. If Λ1 happens, then:

• F does not output failure during the simulation of the oracle Partial-
Private-Key-Extract. This happens with probability (1 − 1

qC
)qP KEx .

• F does not output failure during the simulation of the oracle Secret-
Value-Extract. This happens with probability (1 − 1

qC
)qV Ex .

• F does not output failure during the simulation of sign oracle. This hap-
pens with probability (1 − 1

qC
ζ)qS ≥ (1 − ζ)qS .

Consequently, Pr[Λ1] ≥ (1− 1
qC

)qP KEx+qV Ex(1− ζ)qS . In addition, Pr[Λ2|Λ1] =
ε and Pr[Λ3|Λ1 ∧ Λ2] = ζ

qC
. Therefore, AdvBCk−CAA

F ≥ (1 − 1
qC

)qP KEx+qV Ex



74 R. Tso, X. Yi, and X. Huang

Table 1. Performance Evaluation

(1 − ζ)qS ζ
qC
ε. The function ζ(1 − ζ)qS is maximized at ζ = 1

qS+1 . Therefore,

AdvBCk−CAA
F ≥ (1 − 1

qC
)qP KEx+qV Ex(1 − 1

qS + 1
)qS

1
qC(qS + 1)

ε.

This ends the proof. �

Theorem 2. Unforgeability against Type II Adversary: If there exists a
Type II adaptively chosen message and chosen ID adversary AII who can ask
at most qC Create-User queries, qV Ex Secret-Value-Extract queries and qS
Sign queries, respectively, and can break the proposed scheme in polynomial
time with success probability ε, then there exists an algorithm F which, using
AII as a black box, can solve the k-CAA problem [Definition 4] (where k ≥ qS
and is in proportion to the number of the H1-hash queries) with probability
AdvkCAA

F ≥ (1 − 1
qC

)qV Ex(1 − 1
qS+1 )qS 1

qC(qS+1)ε.

Proof: The proof is similar to that of proving Theorem 1 with a little modifi-
cation. See Appendix for details. �

Theorem 1 is proved in a relatively weaker model than the normal one. That
is, we do not allow the adversary to obtain valid signatures according to the
replaced public key.

As mentioned in Section 1, this model is also acceptable as the signatures that
a “realistic” adversary can obtain are usually generated by a signer under its
original public key. Therefore, this modification is reasonable and Huang et al.’s
first scheme with short signature size [15] is also analyzed in this weak model.

5 Performance Comparison

In this section, we compare our certificateless short signature scheme with other
existing CLS schemes and BLS short signature scheme [9] from the aspect of
communication cost and computation cost in signature signing and verification,
respectively.



Efficient and Short Certificateless Signature 75

In the comparison, the operations such as ê(g, g), ê(PK1, QID) = ê(PK2, g) or
ê(H0(ID),Ppub) are pre-computable or only need to be computed once. There-
fore, these computations are neglected in the comparison. In Table 1, certifi-
cateless signature schemes are marked with ”CLS”. Other schemes are marked
with“No”. We denote by ê a computation of the pairing, EG1 an exponentia-
tion in G1, and EG2 an exponentiation in G2. Usually, pairing operations cost
much more than other computations. One ê operation is about 10 times more
expensive than one E(.) operation.

We can see in Table 1 that our scheme is as efficient as BLS short signature [9]
but our scheme is certificateless whereas BLS scheme is not. This means there is
no need to verify a certificate in our scheme while using BLS scheme, a verifier
needs to verify the certificate in order to confirm the correctness of the public
key, as in the conventional Public key Infrastructure (PKI), which is generally
considered to be costly to use and manage. From this point of view, our scheme
is superior than BLS short signature scheme.

Among all certificateless signature schemes, Huang et al.’s first scheme in [15]
is the only signature scheme providing short signature-length (about 160 bits) as
ours. However, our scheme is more efficient than their scheme in the verification
phase. To the best of our knowledge, our scheme is the most efficient CLS scheme
in the aspects of both communication and computation costs.

6 Conclusion

In this paper, we proposed a certificateless signature scheme which is as efficient
as BLS short signature. We also defined a new hard problem “modified k-CAA
problem” based on the k-CAA problem. The security of the proposed scheme is
proved in the random oracle model under the hardness of k-CAA problem and
modified k-CAA problem.

References

1. Au, M.H., Chen, J., Liu, J.K., Mu, Y., Wong, D.S., Yang, G.: Malicious KGC
attacks in certificateless cryptography. In: Proceedings of ASIACCS 2007, pp. 302–
311 (2007)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Barr, K., Asanovic, K.: Energy aware lossless data compression. In: Proceedings
of the ACM Conference on Mobile Systems, Applications, and Services (MobiSys)
(2003)

4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithm for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)



76 R. Tso, X. Yi, and X. Huang

6. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Confetence on Computer and
Communication Security, pp. 390–398 (2006)

7. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X.: Short signatures withou rando oracles. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–533. Springer, Heidelberg
(2001)

10. Choi, K.Y., Park, J.H., Hwang, J.Y., Lee, D.H.: Efficient certificateless signature
schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 443–458.
Springer, Heidelberg (2007)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

12. Gorantla, M.C., Saxena, A.: An efficient certificateless signature scheme. In: Hao,
Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.)
CIS 2005. LNCS, vol. 3802(II), pp. 110–116. Springer, Heidelberg (2005)

13. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998)

14. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Certificatelss signature: a new secu-
rity model and an improved generic construction. Designs, Codes and Cryptogra-
phy 42(2), 109–126 (2007)

15. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature
revisted. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 308–322. Springer, Heidelberg (2007)

16. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signature
schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.)
CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005)

17. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model. In: Pro-
ceedings of ASIACCS 2007, pp. 273–283 (2007)

18. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. Journal of IEICE
Trans. Fundamentals E85-A(2), 481–484 (2002)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

20. Tô, V., Safavi-Naini, R., Zhang, F.: New traitor tracing schemes using bilinear
map. In: Proceedings of 2003 DRM Workshop, pp. 67–76 (2003)

21. Yap, W.L., Heng, S.H., Goi, B.M.: An efficient certificteless signature. In: Zhou,
X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.C., Kim, D.Y.,
Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS, vol. 4097, pp. 322–
331. Springer, Heidelberg (2006)

22. Yap, W.L., Chow, S.S.M., Heng, S.H., Goi, B.M.: Security Mediated Certificateless
Signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 459–477.
Springer, Heidelberg (2007)



Efficient and Short Certificateless Signature 77

23. Yum, D.H., Lee, P.J.: Generic construction of certificateless signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004)

24. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from binilear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

25. Zhang, Z., Wong, D.S., Xu, J., Feng, D.: Certificateless public-key signature: secu-
rity model and efficiet construction. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS
2006. LNCS, vol. 3989, pp. 293–308. Springer, Heidelberg (2006)

Appendix

Proof of Theorem 2
Proof: If there exists an adversary AII who can break the unforgeability of the
proposed scheme via Type II attack, then, we can construct another adversary
F such that F can use AII as a black-box and solve the k-CCA problem.

Let g be a generator of G1, and x, h1, · · · , hk ∈ Z∗
p be k+ 1 random numbers.

F is given the challenge {g, gx, (h1, g
(x+h1)−1

), · · · , (hk, g
(x+hk)−1

)}. The purpose
of F is to output a tuple (h, g(x+h∗)−1

) for some h∗ /∈ {h1, · · · , hk}, which is the
solution to the k-CAA problem.

Setup: In order to solve the problem, F utilizes AII as a black-box. To get
the black-box AII run properly, F will simulate the environments of the
proposed scheme and the oracles which AII can access. In this proof, we
regard the hash functions H0, H1 as random oracles. F starts by picking an
admissible bilinear pairing ê : G1 × G1 → G2, and sets Ppub = gs, where
s is randomly chosen from Z∗

p. F then sends params = (G1,G2, ê, g, Ppub)
together with the master secret key s to AII and allows AII to run.

Due to the ideal randomness of the H1-hash, we may assume that AII is
well-behaved in the sense that it always requests a H1-hash of m||ID ||PKID

before it requests a signature for m signed by ID ’s public key PKID . In
addition, it always requests a H1-hash of m∗||ID∗||PKID∗ that it outputs as
its forgery. It is trivial to modify any adversary-algorithm AII to have this
property.

Query: At any time, AII is allowed to access the following oracles in a polyno-
mial number of times. These oracles are all simulated by F . Different from
the proof for Type I adversary, there is no oracle Partial-Private-Key-
Extract. This is because that AII has already obtained the master secret
key s so he can compute the partial private key ( i.e., DID = H0(ID)s)) of
any entity using the master key s.
1. Create-User: AII can query this oracle by given an identity IDi . In re-

sponse to these queries,F first chooses a random number t ∈ {1, · · · , qC}.
(1) If i �= t, F chooses di, xi ∈R Z∗

p and computes H0(IDi) = gdi ,
PKIDi = (PK(IDi ,1 ), PK(IDi ,2 )) = (gxi , gxidi). In this case, the cor-
responding partial private key of the entity IDi is DIDi = gsdi and
the secret value is xIDi = xi.



78 R. Tso, X. Yi, and X. Huang

(2) If i = t, F chooses dt ∈R Z∗
p and computes H0(IDt ) = gdt . However,

F sets PKIDt = (PK(IDt ,1 ), PK(IDt ,2 )) = (gx, gxdt). In this case,
F will set DIDt = gsdt and xIDt = ⊥ which means that it cannot
compute the secret value of IDt .

In both cases, returns H0(IDi) and PKIDi .
2. Public-Key-Replace: AII can request to replace public key PKIDi

of an entity IDi with new public key PK ′
IDi

chosen by AII itself. F
replaces the original public key PKIDi with PK ′

IDi
if IDi has been cre-

ated. Otherwise, outputs ⊥. Here, to replace a public key, the secret
value corresponding to the new public key is not required.

3. Secret-Value-Extract: Given IDi chosen by AII , outputs ⊥ if IDi has
not been created. If IDi has been created and i �= t, F returns xIDi

to AII . Otherwise, i = t and F reports failure and terminates the
simulation.

4. H1 queries: AII can query the random oracle H1 at any time on an
input ωi = (ml||IDj ||PKIDk

). For i-th H1 query asked by AII on input
ωi, F first checks if IDj = IDt and PKIDk

= PKIDt or not. Here PKIDt

is the original public key.
• If IDj = IDt and PKIDk

= PKIDt , then F first flips a biased coin
which outputs a value ci = 1 with probability ζ, and ci = 0 with
probability 1 − ζ (the value of ζ will be optimized later).
(1) If ci = 1,F picks a random value h′i ∈ Z∗

p where h′i /∈ {h1, · · · , hk}
and responds h′i to AII as the value of H1(ωi).

(2) If ci = 0, F returns a value h′′i ←R {h1, · · · , hk} as the output
of H1(ωi) where h′′i must be a fresh value which means that it
has not been assigned as an output of H1 queries before.

• Otherwise, F picks and responds with a random value µi ∈ Z∗
p.

In either cases, F records (ωi, h
′
i, ci), (ωi, h

′′
i , ci) or (ωi, µi) to a H1-List

which is initially empty.
5. Sign: For each sign query on an input (ml, IDj ), output ⊥ if IDj has not

been created. For any input (ml, IDj ) with IDj which has already been
created, since we assume that AII is well-behaved, we know that AII has
already queried the random oracleH1 on the input ωi = (ml||IDj ||PKIDj ).
• If IDj �= IDt , F uses the private key (xIDj , DIDj ) of IDj and µi =
H1(ωi) on the H1-List to generate the valid signature σi for the
message ml and the identity IDj .

• If IDi = IDt , then, F first checks the H1-List.
(1) If ci = 1, F reports failure and terminates the simulation.
(2) Otherwise, ci = 0 and h′′i = H1(ml||IDt ||PKIDt ) is on the H1-

List. For easy of description, we assume h′′i = hi ∈ {h1, · · · , hk}.
F then returns σi = gsdt(x+hi)−1

. Note that

ê(σi, PK(IDt ,1 ) · ghi) = ê(gsdt(x+hi)−1
, gx · ghi) = ê(gsdt , g)

= ê(g, g)sdt = ê(gdt , gs) = ê(H0(IDt ),Ppub).

Therefore, σi is a valid signature on ml and IDt .



Efficient and Short Certificateless Signature 79

Forgery: After all the queries,AII outputs a forgery (ID∗,PKID∗ = (PK(ID∗,1 ),
PK(ID∗,2 )),m∗, σ∗) and wins the game.
If σ∗ is a valid forgery, then h∗ = H1(m∗||ID∗||PKID∗) which is on the
H1-List, and

ê(σ∗, PK(ID∗,1 ) · gh∗
) = ê(H0(ID∗),Ppub)

where PK(ID∗,1 ) = gxID∗ must be the original public key generated by the
oracle Create-User. If ID∗ �= IDt , then F outputs failure and terminates
the simulation. Otherwise, ID∗ = IDt and F will check the H1-List.

(1) If c∗ = 0, F outputs failure and terminates the simulation.
(2) Otherwise, c∗ = 1 and h∗ /∈ {h1 · · · , hk}. F computes ξ = (σ∗)(sdt)−1

and outputs the tuple (h∗, ξ) = (h∗, g(x+h∗)−1
) which will be the solution

to the k-CAA problem.

It remains to compute the probability that F solves the k-CAA problem. Actu-
ally, F succeeds if:

Λ1 : F does not abort during the simulation.
Λ2 : σ∗ is a valid forgery on (ID∗,PKID∗ ,m∗).
Λ3 : ID∗ = IDt and c∗ = 1.

The advantage of F is

Advk−CAA
F = Pr[Λ1 ∧ Λ2 ∧ Λ3] = Pr[Λ1] · Pr[Λ2|Λ1] · Pr[Λ3|Λ1 ∧ Λ2].

If Λ1 happens, then

• F does not output failure during the simulation of the oracle Secret-
Value-Extract. This happens with probability (1 − 1

qC
)qV Ex .

• F does not output failure during the simulation of signing oracle. This
happens with probability (1 − 1

qC
ζ)qS ≥ (1 − ζ)qS .

Consequently, Pr[Λ1] ≥ (1 − 1
qC

)qV Ex(1 − ζ)qS . In addition, Pr[Λ2|Λ1] = ε and
Pr[Λ3|Λ1 ∧ Λ2] = ζ

qC
. Therefore, Advk−CAA

F ≥ (1 − 1
qC

)qV Ex(1 − ζ)qS ζ
qC
ε. The

function ζ(1 − ζ)qS is maximized at ζ = 1
qS+1 . Therefore,

Advk−CAA
F ≥ (1 − 1

qC
)qV Ex(1 − 1

qS + 1
)qS

1
qC(qS + 1)

ε.

This ends the proof �



Sanitizable Signatures Revisited

Tsz Hon Yuen1, Willy Susilo1, Joseph K. Liu2, and Yi Mu1

1 Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Australia
{thy738,wsusilo,ymu}@uow.edu.au

2 Cryptography and Security Department,
Institute for Infocomm Research, Singapore

ksliu@i2r.a-star.edu.sg

Abstract. A sanitizable signature scheme is a signature scheme which
allows a sanitizer to hide parts of the original message after the message
is signed, without interacting with the signer. There exists many security
models, properties and constructions for sanitizable signatures, which are
useful in different scenarios. The aim of this paper is twofold. Firstly, we
summarize different properties in the literature and gives some generic
conversions between them. We propose a security model to capture most
of these properties. Secondly, we present the first concrete construction
of sanitizable signatures which is proven secure in the standard model.

Keywords: sanitizable signatures, pairings, standard model.

1 Introduction

A digital signature prohibits any alteration of the original message once it is
signed. It protects the signer against the message forgery.Nevertheless, it also
prevents the message from being process further legitimately as well, which
sometimes is actually desirable.

In a networking scenario where an application level firewall is employed, the
firewall can examine the packets at the application level. A packet reaches the
firewall and is passed to an application-specific proxy, which inspects the validity
of the packet. For example, if a Web request (HTTP) comes in, the data payload
containing the HTTP request will be passed to an HTTP-proxy process. When
the data payload does not satisfy the condition setup in the application proxy,
the packet will be dropped. The problem arises when the overall packets are
actually authenticated by the sender. If the complete packets are delivered to
the receiver, then the receiver can verify the authenticity of the packets by
verifying the signature attached. Nonetheless, if part of the packets have been
dropped, then these packets can no longer be authenticated unless the sender
signs the “new” packets again. The application-proxy cannot sign on behalf of the
signer since the application-proxy does not hold the sender’s secret key. In this
scenario, we require the “sanitized” packets to be authenticated, and therefore

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 80–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Sanitizable Signatures Revisited 81

the application-proxy should be able to somehow obtain the correct signature
on the sanitized packets. This is where sanitizable signature can come into play.

A more typical example of sanitizable signature includes the case when the
government wants to release some partial information in an officially signed doc-
ument, then unfortunately this partial information needs to be signed again.
In this particular case, a government officer may want to delete some sensitive
information such as personal information or national secrets. In order to avoid
the process of having the message to be signed again (since the original signer
may not be available at that time), a sanitizable signature can be used to sign
the document; and the sensitive information is sanitized prior to the release of
the signature.

The major goal of sanitizable signature is to protect the confidentiality of part
of the document while ensuring the integrity of the document. This is called the
“digital document sanitizing problem” in [20]. Similar solutions have been pro-
posed earlier in [21] as “content extraction signature”; and in [15] as “redactable
signature”. Ateniese et al. [1] introduced the “sanitizable signature” which can
change the signed document instead of hiding the signed document. Following
these works, several authors [19,22,16,18,14,7] proposed various sanitizable sig-
nature schemes with different properties.

One of the major differences between the existing schemes is due to the in-
formation used to replace a sanitized message. The majority of these works uses
a special character, φ, to represent a sanitized message. In contrast to this ap-
proach, Miyazaki et al. [18] directly removed the sanitized message and the ver-
ifier does not even notice that the original document has been sanitized. Several
other works [1,16,14] replaced the sanitized message to construct a new message.
In order to prevent forgery by the adversary, the sanitizer needs to use his secret
key in the sanitizing process. Chang et al. [7] proposed a scheme which hides
the number (length) of sanitized messages. Another distinct feature among these
works is how to restrict the sanitization for part of the document. Some schemes
can sanitize any part of the document. Some schemes can prohibit some part
of the documents from being sanitized, and this decision can be made after the
document is signed, performed by either the signer or anyone else. Furthermore,
the designation of sanitizer is another difference between these schemes. Some
schemes select the designated sanitizer a priori when signing. On the contrary,
anyone can sanitize a message in many other schemes. Transparency is also con-
sidered as a new property in some schemes. If a verifier knows which part of the
document is sanitized, then the scheme has no transparency. If he does not know
whether the message is sanitized, then the scheme has weak transparency. If he
also does not know whether the message can be sanitized, then the scheme has
strong transparency.

Our Contribution. In this paper, our contribution is twofold. Firstly, we
formalize the security model for sanitizable signatures to capture different prop-
erties of sanitizable signatures in the literature. We provide a generic conver-
sion between some of the properties of sanitizable signatures. Secondly, we also



82 T.H. Yuen et al.

provide a new concrete construction which is proven secure in the standard
model, without resolving the security to underlying signature schemes. It is the
first in the literature to achieve this security level. In the construction, we use
the first efficient range proof in pairings. We also propose a new notions called
“signature of one-time knowledge”. These two findings may have independent
interest in other cryptographic primitives.

2 Preliminaries

We now give a brief revision on the property of pairings and two candidate hard
problems from pairings that will be used later. Let G1,G2,GT be multiplicative
groups of prime order p. Let g and ḡ be the generators of G1 and G2 respectively.

Definition 1. A map ê : G1 × G2 → GT is called a bilinear pairing if, for all
g ∈ G1, ḡ ∈ G2 and a, b ∈ Zp, we have ê(ga, ḡb) = ê(g, ḡ)ab, and if g and ḡ are
generators of G1 and G2 respectively, then ê(g, ḡ) generates GT .

Definition 2 (CDH). The Computational Diffie-Hellman (CDH) problem is
that, given g, gx, gy ∈ G1 for unknown x, y ∈ Z∗

p, to compute gxy.

We say that the (ε, t)-CDH assumption holds in G1 if no t-time algorithm has
the non-negligible probability ε in solving the CDH problem.

Definition 3 (XDH). The external Diffie-Hellman (XDH) problem is that,
given g, gx, gy, gz ∈ G1 for unknown x, y, z ∈ Z∗

p, to decide if z = xy.

We say that the (ε, t)-XDH assumption holds in G1 if no t-time algorithm has
the non-negligible probability over half ε in solving the XDH problem. Notice
that the XDH assumption means that the DDH assumption holds in the group
G1. A stronger version of the assumption (symmetric XDH, or SXDH) holds if
DDH is also intractable in G2.

3 Sanitizable Signatures Security Models

In this section we review the security notions and models of sanitizable signa-
tures. We extend the model introduced in [22].

3.1 Notation

In this section, we describe some terms for sanitizable signatures.

Document, Message and Flag. We denote a document M as a list of messages
m1||m2|| . . . ||mn, where the length n is the number of messages. We denote that
|| is the concatenation. We use a flag φ as the sanitized message. For two mes-
sages M1 and M2 having the same length, we say that M1 is a subdocument of
M2 if m1

i = m2
i for all i where m1

i are not sanitized.

State. For a message M, let stM be the states of mi. A state can be either:

– sanitized,



Sanitizable Signatures Revisited 83

– disclosed and sanitizing is allowed, or
– disclosed and sanitizing is prohibited.

stM is constructed as (stSM, st
A
M, st

P
M), where stSM is a set of indices of sanitized

messages; stAM is a set of indices of the messages that are “disclosed and sanitiz-
ing is allowed”; stPM is a set of indices of the messages that are “disclosed and
sanitizing is prohibited”.

3.2 Syntax

Sanitizable signatures consist of four algorithms:

KeyGen. On input the security parameter 1k, it outputs a public key and a
private key (pk, sk) and the system parameter param.

Sign. On input a document M, a secret key sk, a state stM of the document
and the system parameter param, it outputs a signature σ.

Sanitize. On input a signature σ, (a document M,) a state stM of M, a new state
of the sanitized document stM′ and the system parameter param, it
outputs a sanitized document M′ and a new signature σ′. It may
output ⊥ if there exists i ∈ stSM ′ is also in stPM .

Verify. On input a signature σ, a document M, a state stM of M, a public key
pk and the system parameter param, it outputs � for valid signature
and ⊥ otherwise.

3.3 Security Model

Correctness. We require that Verify(σ′,M′, stM′ , pk, param) = � if:

– (pk, sk, param) ← KeyGen(1k),
– σ ← Sign(M, sk, stM, param),
– (M′, stM ′ , σ′) ← Sanitize(σ, stM, stM′ , pk, param).

Unforgeability. We have the following game for unforgeability.

1. The simulator S gives param and pk to the adversary A.
2. A is allowed to query the signing oracle qs times adaptively. During the j-th

query, on input a document Mj = mj
1||m

j
2|| . . . ,mj

n and the state stMj , the
oracle returns the corresponding signature σ.

3. Finally A outputs a document M∗, a signature σ∗ and a state stM∗ .

A wins if Verify(σ∗,M∗, stM∗ , pk, param) = � and one of the following holds:

1. M∗ is not a subdocument of any Mj for 1 ≤ j ≤ qs.
2. M∗ is a subdocument of some Mj for 1 ≤ j ≤ qs and some m∗

i are sanitized,
where i ∈ stPMj .

3. M∗ is a subdocument of some Mj for 1 ≤ j ≤ qs and there exists some i such
that i ∈ stSMj ∧ i /∈ stSM∗ .



84 T.H. Yuen et al.

Definition 4. A sanitizable signature scheme is (ε, t, qs)-unforgeable if there is
no t time adversary winning the above game with probability at least ε with at
most qs queries to the signing oracle.

Indistinguishability. We have the following game for indistinguishability.

1. The simulator S gives param and pk to the adversary A.
2. A is allowed to query the signing oracle qs times adaptively. The oracle is

the same as in the game for unforgeability.
3. A gives S two documents M0∗, M1∗ and a state stM∗ . It is required that:

– m0∗
i = m1∗

i for all i /∈ stSM∗ and
– m0∗

i �= m1∗
i for some i ∈ stSM∗ .

S first checks if the documents satisfy the requirements. Then S randomly
chooses a bit b and sends the signature σb∗ for the document Mb∗.

4. Finally A outputs a bit b′.

A wins the game if b = b′. The advantage of A is |Pr[b = b′] − 1/2|.

Definition 5. A sanitizable signature scheme is (ε, t, qs)-indistinguishable if
there is no t time adversary winning the above game with advantage at least ε
with at most qs queries to the signing oracle.

3.4 Various Properties and Their Implications in Security

We will discuss various properties of sanitizable signature schemes. We extend
the discussion from [22] by adding more properties from various schemes. We
then explain the impacts on the security model.

State Controllability. We consider three types of state controllability:

1. The sanitizer can sanitize any message he wants and the signer cannot re-
strict it. In the security model, there is no state stPM.

2. The signer can assign the states stPM or stAM to the non-sanitized message.
However the states cannot be changed from stAM to stPM without the signer’s
secret key after the signature is generated. This property imposes a restric-
tion on the Sanitize protocol. To reflect this in the security model, we add
an extra condition for the adversary to win the unforgeability game: M∗ is
a subdocument of some Mj for 1 ≤ j ≤ qs and there exists some i such that
i ∈ stAMj ∧ i /∈ stPM∗ .

3. The signer can assign the states stPM or stAM to the non-sanitized message.
The states can be changed from stAM to stPM without the signer’s secret key.
The current model is for this type. It was proposed by [19] to prevent the
additional sanitizing attack.

Sanitized Message. We consider four different types of sanitized message:

1. The sanitization of the message causes the shortening of the message. In
the security model, the sanitized message φ is equal to a null string. The
definition of a subdocument is changed as follows: M1 is a subdocument of



Sanitizable Signatures Revisited 85

M2 if it can be obtained from M2 by removing some non-empty messages in
it. The security model includes an extra invisibility game [18], which can be
included in our indistinguishability game by setting the challenge document
(to form the challenge signature) as a subdocument of both M0∗ and M1∗.

2. Each sanitized message is represented by a special character φ. Everyone can
notice where the document is sanitized. The current model is for this type.

3. Each sanitized message is represented by a special character φ and consec-
utive φs can be combined into one. The length of the sanitized message
is hidden. The definition of a subdocument is changed as follows: M1 is a
subdocument of M2 if it can be obtained from M2 by removing some non-
empty messages in it and replacing it by a single φ. The security model in
[7], which can be included in our indistinguishability game by setting the
challenge document as a subdocument of both M0∗ and M1∗.

4. Each sanitized message can be changed to any message chosen by the san-
itizer. In the security model, the sanitized message φ is equal to a new
message m′

i.
1

Designated Sanitizer. We consider two types of designation of sanitizer.

1. The signer cannot choose who are the designated sanitizers when he signs
the document. The current model is for this type. In some protocols, Sign
also outputs a secret information SI2 to the sanitizer. Sanitize will then
have an additional input SI. In the security model, the signing oracle should
also output SI.3

2. The signer has to designate the specific sanitizers. In the protocol, KeyGen
will also generate the keys for sanitizers. Sign should also take the sanitizers’
public keys as the input. Sanitize will have the sanitizer’s secret key as an
additional input.4 For the unforgeability and indistinguishability game, the
adversary is given the public and private keys of the sanitizers. It prevents the
attack from dishonest sanitizers like the Deletion-of-Last-Sanitizer Attack
in [14]. At the challenge phase of the indistinguishability game, the adversary
also gives the public keys of the sanitizers to the simulator. The adversary
may have the secret keys of the challenge sanitizers.5

Transparency. We consider three types of transparency.

1. No transparency. The verifier knows which part of the document is sanitized.
The current model is for this type. The sanitized message must be either type
2 or type 3.

1 Possible extension includes enforcing the same modification of different messages,
and limiting the number of modifications [16].

2 SI is firstly formalized in [22], but the idea is implicit in early papers.
3 If several SI can combine together to form an aggregate SI , the scheme has the

binding subdocuments function [18].
4 It is optional for Verify to take the sanitizers’ public keys as the input, e.g. in

[13,14]. It will then have the property sanitizer identification.
5 [14] has extensions called dishonest sanitation identification and dishonest sanitizer

identification. However there is no formal model proposed in [14].



86 T.H. Yuen et al.

2. Weak transparency. The verifier does not know if the message is sanitized.
The verifier only knows if the state is stPM or not. In the model the states
stSM and stAM are combined into one state when it is sent to the verifier. The
sanitized message must be either type 1 or type 4.

3. Strong transparency. The verifier does not know if the message can be san-
itized. In the model the state information is not sent to the verifier. The
sanitized message must be either type 1 or type 4.

3.5 Generic Conversion

As there are different properties of sanitizable signatures needed in different sce-
narios, we propose some generic conversions between different properties.

State Controllability. Type 2 and type 3 can be converted to type 1 by for-
bidding state stPM in the scheme.

Sanitized Message. Type 4 can be converted to type 2 by using a special
character φ. Type 3 can be converted to type 2 by using special characters φ1
and φ2 alternatively.

Designated Sanitizer. Type 1 can be converted to type 2 by verifiablely
encrypting the secret information to the designated sanitizer. Type 2 can be
converted to type 1 by publishing a private and public key pairs and always
designating to that public key.

4 Basic Building Blocks

4.1 Signatures of Knowledge

Camenisch and Stadler [6] introduced notions for various proofs of knowledge
of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For example,

PK{(α) : y = gα},

denotes a “zero knowledge proof of knowledge of α such that y = gα”, where
y and g are known by the verifier. There are many signature schemes obtained
from such PK using the Fiat-Shamir heuristic [9]. These schemes are known as
the signatures of knowledge (SoK) [8]. For example, a SoK for a message m can
be represented as:

SoK{(α) : y = gα}(m).

The SoK system is widely used in signature protocols like group signatures, ring
signatures, etc. However, the security of many existing SoK protocols rely on
the random oracle model [2], due to the use of the Fiat-Shamir heuristic.



Sanitizable Signatures Revisited 87

4.2 One Time Signature in the Standard Model

Recently, Bellare and Shoup [3] introduced two-tier signatures which can be con-
structed from three-move identification protocols using Fiat-Shamir transform
in the standard model. It requires that the canonical identification protocol has
special soundness and the hash function is collision resistant. Bellare and Shoup
[3] suggested that two-tier signatures can be used to construct one time signa-
tures in the standard model.

Various standard signatures without random oracles are proposed [4,23,10].
However the structure of some schemes are difficult to use to construct signatures
with special properties. Sometimes we need to use a proof of knowledge of the
randomness used in those signatures. Notice that since the randomness is only
used once, it suffices to use the proof of knowledge protocol with the one time
signature in [3]. We introduce the notion “Signature of One-Time Knowledge”
(SOTK) for such situation:

SOTK{(α) : y = gα}(m).

An example will be given at the end of this section. Notice that the underlying
proof of knowledge protocol must have the special soundness property. The use
of SOTK is of independent interest to construct different types of signatures in
the standard model.

4.3 Commitment for Pairings

Groth and Sahai [11] generalized several commitments over the pairings. We
review the one based on the external Diffie-Hellman (XDH) assumption.

Let G1 be the group that the DDH problem is hard. By entry-wise mul-
tiplication we get an abelian group G2

1. Let (g, h), (u, v) be two elements in
G2

1. We commit to φ ∈ Zp, by choosing ρ ∈ Zp at random and setting Y :=
(g, h)φ · (u, v)ρ = (gφuρ, hφvρ). When (g, h) and (u, v) are linearly independent
this determine φ ∈ Zp; but if (g, h) = (u, v)s for some s ∈ Zp, then we have
a perfectly hiding Pedersen commitment to φ. Under the XDH assumption, we
cannot tell if (g, h) and (u, v) are linearly independent or not.

We extend the above commitment scheme to allow simultaneous commitment
to a tuple of integers. Let K = ((g1, h1), . . . , (gn, hn), (u, v)) be elements in G2

1.
We commit to φ1, . . . , φn ∈ Zn

p , by choosing ρ ∈ Zp at random and setting the
commitment:

CK(φ1, . . . , φn; ρ) :=
n∏

i=1

(gi, hi)φi · (u, v)ρ = (
n∏

i=1

gφi

i u
ρ,

n∏
i=1

hφi

i v
ρ).

It is straightforward to show that the security of this commitment scheme and the
security of the Groth and Sahai’s XDH commitment scheme [11] are equivalent,
provided that the mutual discrete logarithms of gi and hi are not known.



88 T.H. Yuen et al.

4.4 Efficient Range Proof

Proving that a committed number x lies in some interval [a, b] is useful in many
protocols. Usually we prove that both x − a and b− x are non-negative. It can
be done by either Boudot’s method [5] or prove that the number can be written
as the sum of four squares [17]. The first method works on the RSA group and
therefore not useful in pairings group with order p. In [17], their method uses
commitment schemes where the group order is not known by the arguer.

We propose the use of Groth and Sahai’s XDH commitment scheme [11] with
Lipmaa’s sum of square method [17] to construct an efficient range proof for
pairings group with order p. To prove that µ is non-negative, the arguer A rep-
resents µ = ω2

1 +ω2
2 +ω2

3 +ω2
4, using the algorithm in [17]. Let K = ((g, h), (u, v))

be the public key. He performs a proof of knowledge PK((ω1, ω2, ω3, ω4, ρ) : Y =
CK(

∑4
i=1 ω

2
i ; ρ)). The algorithm is as follows:

1. For i = 1, . . . , 4, A chooses random r1,i ∈R Zp such that
∑4

i=1 r1,i = ρ. A
chooses random φi, r2,i, r3 ∈R Zp. A computes:

T1,i = (g, h)ωi · (u, v)r1,i , T2,i = (g, h)φi · (u, v)r2,i , T3 =
4∏

i=1

(T1,i)φi · (u, v)r3 .

The arguer A sends ({T1,i, T2,i}i∈[4], T3) to the verifier V .
2. V generates a random challenge c ∈ Zp and sends it to A.
3. A sends ({z1,i, z2,i}i∈[4], z3) to V , where:

z1,i = φi + cωi, z2,i = r2,i + cr1,i, z3 = r3 + c
4∑

j=1

(1 − ωj)r1,j .

4. V checks that for i = 1, . . . 4

(g, h)z1,i · (u, v)z2,i · T−c
1,i = T2,i,

( 4∏
i=1

T
z1,i

1,i

)
· (u, v)z3 · Y −c = T3.

Theorem 1. The above protocol is an honest-verifier statistical zero-knowledge
(HVSZK) proof that Y = CK(µ) and µ ≥ 0, if the XDH assumption holds.

Proof. Completeness. It is straightforward and is omitted due to space limit.
HVSZK. For i = 1, . . . , 4, the simulator generates random T̃1,i from G2

1, random
z̃1,i, z̃2,i, z̃3, c̃ from Zp. He computes:

T̃2,i = (g, h)z̃1,i · (u, v)z̃2,i · T̃−c̃
1,i , T̃3 =

( 4∏
i=1

T̃
z̃1,i

1,i

)
· (u, v)z̃3 · Y −c̃.

Then the resulting view ({T̃1,i, T̃2,i}i∈[4], T̃3; c̃; {z̃1,i, z̃2,i}i∈[4], z̃3) has a distribu-
tion which is statistically close to the real distribution.



Sanitizable Signatures Revisited 89

Special Soundness. For two accepting transcripts ({T1,i, T2,i}i∈[4], T3; c; {z1,i,
z2,i}i∈[4], z3) and ({T1,i, T2,i}i∈[4], T3; c′; {z′1,i, z

′
2,i}i∈[4], z

′
3), the special sound-

ness defined in [3] required that (c; {z1,i, z2,i}i∈[4], z3) �= (c′; {z′1,i, z
′
2,i}i∈[4], z

′
3).

Then we have for i = 1, . . . , 4

(g, h)z1,i−z′
1,i · (u, v)z2,i−z′

2,i = T c−c′

1,i ,
( 4∏

i=1

T
z1,i−z′

1,i

1,i

)
· (u, v)z3−z′

3 = Y c−c′ .

If c �= c′, we have:

( 4∏
i=1

(g, h)
(z1,i−z′

1,i)
2

c−c′ · (u, v)
(z1,i−z′

1,i)(z2,i−z′
2,i)

c−c′
)
· (u, v)z3−z′

3 = Y c−c′ .

Then we can set ω̃i = (z1,i−z′
1,i)

c−c′ for i ∈ [4] and ρ̃ =
∑4

i=1(z1,i−z′
1,i)(z2,i−z′

2,i)
(c−c′)2 +

z3−z′
3

c−c′ , such that Y = CK(
∑4

i=1 ω̃
2
i ; ρ̃). If c = c′, we have:

(g, h)z1,i−z′
1,i = (u, v)z′

2,i−z2,i for i ∈ [4],
( 4∏

i=1

T
z1,i−z′

1,i

1,i

)
= (u, v)z′

3−z3 .

If for all i ∈ [4], z′2,i = z2,i, then it implies z1,i = z′1,i and hence z′3 = z3. This
makes the two transcripts completely the same. Therefore if for some i ∈ [4],

z′2,i �= z2,i and hence (g, h)
z1,i−z′

1,i

z′
2,i

−z2,i = (u, v). However, it contradicts the indistin-
guishability of the linear independence of the commitment. We can construct an
algorithm to solve the XDH problem. ��

To the best of the authors’ knowledge, this is the first efficient range proof for
the pairings. This proof may be useful in other cryptographic primitives.

4.5 Examples with Proof of Range

We give the example for SOTK, which will be used in our sanitizable signature
scheme. We want to prove the following relations:

PK{(µ, ρ) : (x = gµuρ ∨ x′ = gµuρ) ∧ 0 ≤ µ ≤ w}.

To perform the range proof with our commitment scheme, we have to compute:

PK{(µ, ρ) : (Y := (y1, y2) = (g, h)µ · (u, v)ρ ∧ µ ≥ 0)
∧ (Z := (g, h)w · Y −1 = (g, h)w−µ · (u, v)−ρ ∧ w − µ ≥ 0)
∧ (y1 = x ∨ y1 = x′)}.

WLOG, assume y1 = x′. The arguer A represents µ = ω2
1 + ω2

2 + ω2
3 + ω2

4 and
w−µ = η2

1 +η2
2 +η2

3 +η2
4, using the algorithm in [17]. The algorithm is as follows.



90 T.H. Yuen et al.

1. For i = 1, . . . , 4, the arguer A chooses random r1,i, t1,i, s1,i ∈R Zp such that∑4
i=1 r1,i =

∑4
i=1 t1,i = ρ and

∑4
i=1 s1,i = −ρ. A chooses random φi, r2,i, r3,

δi, t2,i, t3, ϕi, s2,i, s3, c1 ∈R Zp. A sends ({R1,i, R2,i}i∈[4], R3, {T1,i, T2,i}i∈[4],
T3, {S1,i, S2,i}i∈[4], S3) to the verifier V , where:

R1,i = (g, h)ωi · (u, v)r1,i · (x, 1), R2,i = (g, h)φi · (u, v)r2,i · (x, 1)−c1 ,

R3 =
4∏

i=1

(R1,i)φi · (u, v)r3 · (x′c1x(
∑ 4

i=1 ωi−1)c1 , 1),

T1,i = (g, h)δi · (u, v)t1,i , T2,i = (g, h)δi · (u, v)t2,i ,

T3 =
4∏

i=1

(T1,i)δi · (u, v)t3 , S1,i = (g, h)ηi · (u, v)s1,i ,

S2,i = (g, h)ϕi · (u, v)s2,i , S3 =
4∏

i=1

(S1,i)ϕi · (u, v)s3 .

2. V generates a random challenge c ∈ Zp and sends it to A.
3. A sends (c1, c2, {z1,i, z2,i, z4,i, z5,i, z7,i, z8,i}i∈[4], z3, z6, z9) to V , where:

c2 = c⊕ c1, z1,i = φi + c1ωi,

z2,i = r2,i + c1r1,i, z3 = r3 + c1
4∑

j=1

(1 − ωj)r1,j ,

z4,i = δi + c2ωi, z5,i = t2,i + c2t1,i, z6 = t3 + c2
4∑

j=1

(1 − ωj)t1,j ,

z7,i = ϕi + cηi, z8,i = s2,i + cs1,i, z9 = s3 + c
4∑

j=1

(1 − ηj)s1,j .

4. V checks that c = c1 ⊕ c2 and for i = 1, . . . , 4:

(g, h)z1,i · (u, v)z2,i ·R−c1
1,i = R2,i,

( 4∏
i=1

R
z1,i

1,i

)
· (u, v)z3 · (x, y2)−c1 = R3,

(g, h)z4,i · (u, v)z5,i · T−c2
1,i = T2,i,

( 4∏
i=1

T
z4,i

1,i

)
· (u, v)z6 · (x′, y2)−c2 = T3,

(g, h)z7,i · (u, v)z8,i · S−c
1,i = S2,i,

( 4∏
i=1

S
z7,i

1,i

)
· (u, v)z9 · Z−c = S3.

Lemma 1. The above protocol is an honest-verifier statistical zero-knowledge
(HVSZK) proof that (x = g−µuρ ∨ x′ = g−µuρ) ∧ 0 ≤ µ ≤ w, if the XDH
assumption holds.

The proof is very similar to the range proof and is omitted due to the space
limit. To turn the above proof of knowledge into SOTK, we use the conversion
from [3]. The signature scheme



Sanitizable Signatures Revisited 91

SOTK{(µ, ρ) : (x = gµuρ ∨ x′ = gµuρ) ∧ 0 ≤ µ ≤ w}(m),

is as follows:

KeyGen. Randomly pick K ∈ {0, 1}k. The public key is (g, h, x, x′, {R1,i, R2,i,
T1,i, T2,i, S1,i, S2,i}i∈[4], R3, T3, S3, K). The private key is ({φi, r1,i, r2,i, δi,
t1,i, t2,i, ϕi, s1,i, s2,i}i∈[4], r3, t3, s3, c1, µ, ρ). It also chooses a collision resistant
hash function.

Sign. To sign a message m, the signer computes c = H(K, {R1,i, R2,i, T1,i, T2,i,
S1,i, S2,i}i∈[4], R3, T3, S3, m). The signature is (c1, c2, {z1,i, z2,i, z4,i, z5,i, z7,i,
z8,i}i∈[4], z3, z6, z9).

Verify. Verify as step (4) in the proof of knowledge and check if c = H(K, {R1,i,
R2,i, T1,i, T2,i, S1,i, S2,i}i∈[4], R3, T3, S3, m).

For the security of the above scheme, it follows from theorem 6.1 and
theorem 5.1 of [3], we only have to prove the special soundness for the proof
of knowledge protocol and assume the hash function is collision resistant. There-
fore the above SOTK scheme is a secure one-time signature.

5 Sanitizable Signature Scheme

We present our sanitizable signature scheme. It is motivated by Waters identity-
based encryption [23]. Our scheme consists of the following algorithms.

Key Generation. Let G1,G2,GT be groups of prime order p. Given a pairing:
ê : G1×G2 → GT . Select g, h1, . . . , hn ∈ G1 and g2, u′, u1, . . . , un ∈ G2 and w ∈
Z∗

p. The system parameter is param = (G1,G2,GT , ê, g, p, g2, u
′, w, u1, . . . , un,

h1, . . . , hn). The signer randomly picks a secret key sk as α ∈ Z∗
p and his public

key pk is computed as g1 = gα.

Sign. To sign a n-bit document M = m1m2 . . .mn ∈ {0, 1}n with a state stM
of M , the signer randomly picks r ∈ Z∗

p and returns (σ1, σ2), where:

σ1 = gα
2 (u′

n∏
i=1

umi

i )r, σ2 = gr.

Sanitize. Upon input a signature (σ1, σ2), a document M = m1m2 . . .mn, an
old state stM and a new state stM ′ , the sanitizer does the followings:

1. Check for all i ∈ stSM ′ is also in stAM . If not, return ⊥ and exit.
2. Check if e(g, σ1) = e(g1, g2) · e(σ2, u

′∏n
i=1 u

mi

i ). If not, return ⊥ and exit.
3. For all i ∈ stSM ′ , pick a random ri ∈ Z∗

w, si ∈ Z∗
p and then compute:

Ai = σmi
2 grihsi

i , σ′1 = σ1

∏
i∈stS

M′

uri

i , σ3,i = usi

i ,



92 T.H. Yuen et al.

σ4,i = SOTK{(ri, si) : (Ai = grihsi

i ∨Ai/σ2 = grihsi

i ) ∧ 1 ≤ ri ≤ w}(σ′1).

4. For i ∈ stSM ′ , change the sanitized bit mi = φ to form a document M ′. The
sanitized signature is (σ′1, σ2, {Ai, σ3,i, σ4,i|i ∈ stSM ′}).

Verify. Upon receiving a signature (σ′1, σ2, {Ai, σ3,i, σ4,i|i ∈ stSM ′}) and a docu-
ment M = m1m2 . . .mn ∈ {φ, 0, 1}n, check if:

e(g, σ′1) ·
∏

i|mi=φ

e(hi, σ3,i) = e(g1, g2) · e(σ2, u
′
∏

j|mj �=φ

u
mj

j ) ·
∏

i|mi=φ

e(Ai, ui),

and σ4,i are valid SOTK. Return � if the above holds. Otherwise return ⊥.

5.1 Security Result

We prove the security of our scheme under the model of state type 1, message
type 2, sanitizer type 1 and transparency type 1, defined in section 3.4. The
correctness of our scheme is obvious.

Theorem 2. Our sanitizable signature scheme is (ε, t, qs)-unforgeable if the
(ε′, t′)-CDH assumption holds and the SOTK is a strong one-time signature,
where:

ε ≤ (8q2s(n+ 1)2w2 + 2)ε′ +
2
p
, t = t′ −O(qsnρ+ qsτ),

and ρ and τ are the time for a multiplication and an exponentiation in G, re-
spectively.

Proof. Assume there is a (ε, t, qs)-adversary A exists. We are going to construct
another PPT B that makes use of A to solve the CDH problem with probability
at least ε′ and in time at most t′.

B is given a problem instance as follow: Given a group G, a generator g ∈ G,
two elements ga, gb ∈ G. It is asked to output another element gab ∈ G. In order
to use A to solve for the problem, B needs to simulates a challenger and the
signing oracle for A. B does it in the following way.
Setup. Let l = 2qs. B randomly selects an integer k such that 0 ≤ k ≤ n. Also
assume that l(n + 1)w < p, for the given values of qs, w and n. It randomly
selects the following integers:

– x′ ∈R Zl ; y′ ∈R Zp.
– x̂i ∈R Zl, for i = 1, . . . , n. Let X̂ = {x̂i}.
– ŷi, ẑi ∈R Zp, for i = 1, . . . , n. Let Ŷ = {ŷi}.

We further define the following functions for binary string m = (m1, m2, . . .,
mn), where mi ∈ {0, 1} for i = 1, . . . n, as follow:

F (m) = x′ +
n∑

i=1

x̂imi − lk and J(m) = y′ +
n∑

i=1

ŷimi.



Sanitizable Signatures Revisited 93

B constructs a set of public parameters as follow:

g2 = gb, u′ = g−lk+x′

2 gy′
, ui = gx̂i

2 g
ŷi , hi = uẑi

i for 1 ≤ i ≤ n.

We have the following equation:

u′
n∏

i=1

umi

i = g
F (m)
2 gJ(m).

All the above public parameters and public key g1 = ga are passed to A.
Oracle Simulation. B simulates the signing oracle as follow. Upon receiving a
j-th query for a document mj, although B does not know the secret key, it can
still construct the signature by assuming F (mj) �= 0 mod p. It randomly chooses
rj ∈R Zp and computes the signature as

σ1,j = g
− J(mj)

F (mj )

1

(
g

F (mj)
2 gJ(mj)

)rj
, σ2,j = g

− 1
F (mj )

1 grj .

By letting r̃j = rj − a
F (mj)

, it can be verified that σ1,j is a valid signature, shown
as follow:

σ1,j = g
− J(mj)

F (mj )

1 (gF (mj)
2 gJ(mj))rj

= g
−aJ(mj )

F (mj ) (gF (mj)
2 gJ(mj))

a
F (mj ) (gF (mj)

2 gJ(mj))
− a

F (mj) (gF (mj)
2 gJ(mj))rj

= ga
2(gF (mj)

2 gJ(mj))r̃j ,

σ2,j = g
− 1

F (mj )

1 grj = g
rj− a

F (mj ) = gr̃j .

To the adversary, all signatures given by B are indistinguishable from the signa-
tures generated by the true challenger.

If F (mj) = 0 mod p, since the above computation cannot be performed (di-
vision by 0), the simulator aborts. To make it simple, the simulator will abort
if F (mj) = 0 mod l. The equivalence can be observed as follow. From the as-
sumption l(n + 1)w < p, it implies 0 ≤ lk < p and 0 ≤ x′ +

∑n
i=1 x̂imi < p

(∵ x′ < l, x̂i < l). We have −p < F (mj) < p which implies if F (mj) = 0 mod p
then F (mj) = 0 mod l. Hence, F (mj) �= 0 mod l implies F (mj) �= 0 mod p. Thus
the former condition will be sufficient to ensure that a signature can be computed
without aborting.
Output Calculation. If B does not abort, A will return a document m∗ = m∗

1 . . .
m∗

n with a forged signature σ∗. If σ∗ is not a sanitized signature and A wins the
game, it means A can forge the Waters’ signature [23] and hence B can solve the
CDH problem.

If σ∗ is a sanitized signature with σ∗ = (σ1, σ2, σ4, {Ai, σ3,i|i ∈ stSM ′}). Let
σ∗2 = gr∗

, σ∗3,i = u
s∗

i

i and A∗
i = gr∗

i h
s∗

i

i . B aborts if x′+
∑

i|m∗
i �=φ x̂i− lk �= 0 mod l

or
∑

j|m∗
j =φ x̂ir

∗
i �= 0 mod l (notice that the latter condition can only be checked

at the end of the output calculation).



94 T.H. Yuen et al.

By the verification equation, we can rewrite:

σ∗1 = ga
2g

(x′+
∑

i|mi �=φ x̂i−lk)r∗

2 g(y
′+
∑

i|mi �=φ ŷi)r∗
g

∑
i|mi=φ x̂ir

∗
i

2 g
∑

i|mi=φ x̂ir
∗
i

= ga
2g

(y′+
∑

i|mi �=φ ŷi)r∗+
∑

i|mi=φ x̂ir
∗
i .

Therefore B can compute and output

Z = σ∗1σ
∗
2
−y′−

∑
i|mi �=φ ŷi

∏
i|mi=φ

(σ∗3,i
ẑiA∗

i
−1)x̂i = ga

2 = gab

as the answer to the CDH problem.

Probability Analysis. For the simulation to complete without aborting, we define
the events Ai, A

∗
1, A

∗
2 such that the following conditions fulfilled:

Ai : F (mj) �= 0 mod l where j = 1, . . . , qs,

A∗
1 : x′ +

∑
i|m∗

i �=φ

x̂i − lk = 0 mod p,

A∗
2 :

∑
i|m∗

i =φ

x̂ir
∗
i = 0 mod p.

The probability of B not aborting is

Pr[not abort] ≥ Pr
[( qs∧

i=1

Ai

)
∧A∗

1 ∧A∗
2

]
.

For the output calculation, as x̂i < l and 0 ≤ r∗i ≤ w (by the range proof),
we have −p <

∑
i|m∗

i =φ x̂ir
∗
i < p. Therefore

∑
i|m∗

i =φ x̂ir
∗
i = 0 mod p implies∑

i|m∗
i =φ x̂ir

∗
i = 0 mod lw.

Pr[A∗
2] = Pr[

∑
i|m∗

i =φ

x̂ir
∗
i = 0 mod p ∧

∑
i|m∗

i =φ

x̂ir
∗
i = 0 mod lw]

= Pr[
∑

i|m∗
i =φ

x̂ir
∗
i = 0 mod lw] Pr[

∑
i|m∗

i =φ

x̂ir
∗
i = 0 mod p |

∑
i|m∗

i =φ

x̂ir
∗
i = 0 mod lw]

=
1

l(n+ 1)w
.

Notice that x̂i is hidden in ui by the random element ŷi. The adversary cannot
make B abort by a chance better than making B abort by randomly choosing r∗i
and m∗

i .
Similarly, we have Pr[A∗

1] = 1
l(n+1)w since the adversary can at most make B

abort by randomly choosingm∗
i . If the adversary randomly choosesm∗

1 such that
A∗

1 happens, he still needs to randomly choose r∗i to make Pr[A∗
2] not happening.



Sanitizable Signatures Revisited 95

Notice that the event Ai is independent of the event A∗
1 and A∗

2. Therefore

Pr[not abort] ≥ Pr[A∗
1 ∧A∗

2] Pr[
qs∧

i=1

Ai|A∗
1 ∧A∗

2]

≥ 1
(l(n+ 1)w)2

(1 −
qs∑

i=1

Pr[¬Ai|A∗
1 ∧A∗

2])

=
1

(l(n+ 1)w)2
(1 − qs

l
).

Putting l = 2qs, we have

Pr[not abort] ≥ 1
8q2s(n+ 1)2w2 .

We have the probability bound by combining the result from SOTK (which is
based on [3]).

Time Analysis. In the proof, A has to compute O(n) multiplication and O(1)
exponentiation for every signing oracle query. ��

Theorem 3. Our sanitizable signature scheme is indistinguishable if the SOTK
is zero-knowledge.

Proof. (Sketch) In the signature, σ∗2 is computed by from a random number r
only. σ∗1 only contains the information of the sanitized message, but not the
original message. The sanitized message for both M0∗ and M1∗ are the same.
The part (A∗

i , σ
∗
3,i) only contains the information for m∗

i ∈ stAMb∗ , which is the
same when b = 0 or 1. σ∗4 is computed from a zero knowledge proof SOTK.
Therefore our scheme is indistinguishable in an information theoretic sense.

5.2 Comparison

The comparison of different sanitizable signature schemes are summarized in
Table 1. Different types of state controllability, sanitized message, designated
sanitizer and transparency are explained in Section 3.4. The security of some
schemes rely on the security of the underlying signature, hash function or com-
mitment scheme used. There is no security theorem for [16]. Chang et al. [7] must
be used with other sanitizable signature scheme (with unordered documents).
Therefore its properties and security may change depending on the underlying
scheme used.

For efficiency, our signature has one G1 and one G2 elements when it is not
sanitized. This is efficient even when compared to standard signature scheme,
when we take 170-bit for pairings. Each time when it is sanitized, it will generates
extra 55 G1, 1 G2 and 29 Zp elements. It is inefficient when compared to other
schemes. However our scheme is the first scheme proven secure in the standard
model, without resolving to the underlying signature.



96 T.H. Yuen et al.

Table 1. Comparison of Sanitizable Signature Schemes (refer to Section 3.4 for the
meaning of the number)

Scheme State Message Sanitizer Transparency Security Model
[21] 2 2 1 1 RSA ROM
[15] 1 2 1 1 underlying signature standard
[20] 1 2 1 1 underlying signature standard
[1] 2 4 2 2 underlying signature and

chameleon hash
standard

[19] 3 2 1 1 underlying signature and
commitment

standard

[22] 3 2 1 1 co-GDH ROM
[16] 2 4 2 3 - -
[18] 3 1 1 2 CDH ROM
[14] 1 4 1 1 co-GDH ROM
[7] 1* 3 1* 1 strong RSA + ? standard
[12] 3 2 1 1 underlying signature,

commitment and pseudo-
random generator

standard

this paper 1 2 1 1 CDH + XDH standard

6 Conclusion

In this paper, we firstly reviewed the existing works on sanitizable signature
schemes by summarizing different properties used by different authors in the
literature. We note that these properties are useful in many different security
applications, but they are not required to co-exist concurrently. Furthermore, we
also provided some generic transformations among them. Then, we presented a
security model to capture most of these properties.

We presented the first concrete construction of sanitizable signature scheme
that is provably secure under the standard assumption without random oracle.
We provided a security analysis based on the model that we devised earlier. We
also provided a fair comparison of the performance of our scheme compared to
the existing ones. Moreover, we propose a notion called “Signatures of One-Time
Knowledge”. We also construct a range proof in the pairings.

References
1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:

de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

3. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)



Sanitizable Signatures Revisited 97

5. Boudot,F.:Efficientproofs that a committednumber lies in an interval. In:Preneel,B.
(ed.) EUROCRYPT2000. LNCS, vol. 1807, pp. 431–444. Springer,Heidelberg (2000)

6. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-
tended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

7. Chang, E.-C., Lim, C.L., Xu, J.: Short sanitizable signatures for strings using
random trees. Private Communication (2007)

8. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

10. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

11. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

12. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S.,
Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and
data deidentification. In: ASIACCS 2008, pp. 353–362. ACM, New York (2008)

13. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: Piats: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

14. Izu, T., Kunihiro, N., Ohta, K., Takenaka, M., Yoshioka, T.: A sanitizable signature
scheme with aggregation. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS,
vol. 4464, pp. 51–64. Springer, Heidelberg (2007)

15. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

16. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

17. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003)

18. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM, New York (2006)

19. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1), 239–246 (2005)

20. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.:
Digital documents sanitizing problem. IEICE Technical Report, ISEC2003-20, 61–
67 (2003)

21. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

22. Suzuki, M., Isshiki, T., Tanaka, K.: Sanitizable signature with secret information.
In: Symposium on Cryptography and Information Security, vol. 4A1-2 (2006)

23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)



An Efficient On-Line/Off-Line Signature Scheme
without Random Oracles

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
marc.joye@thomson.net

Abstract. On-line/off-line signature schemes allow one to quickly com-
pute a digital signature from a pre-computed coupon. One of the most
efficient schemes to date is the GPS scheme, due to Girault, Poupard
and Stern. Its security stands in the random oracle model. This paper
presents a novel on-line/off-line signature featuring the same on-line ef-
ficiency (only a single small integer multiplication has to be computed)
but without relying on random oracles.

Keywords: Cryptography, digital signature, on-line/off-line signing,
standard model.

1 Introduction

Likewise handwritten signatures, digital signatures should feature important re-
quirements making them compelling for a number of applications. Namely, in ad-
dition to be unforgeable, they should offer the properties of authenticity, integrity
and non-repudiation of signed messages. The advent of public-key cryptographic
techniques made possible to allow anyone to perform publicly the verification of
signatures. Informally, in a digital signature scheme, each user possesses a pair
of matching public key and private key. The private key is used to sign messages
while the public key is used to verify signatures.

There exist numerous digital signature schemes, the security of which rely
on various intractability assumptions (e.g., discrete logarithms or integer factor-
ization). Several signature schemes are shown to be secure even against chosen-
message attacks. Existential unforgeability against chosen-message attacks is the
security notion classically retained for signature schemes. Basically, it requires
that an adversary having access to a signing oracle returning the signature on
messages of its choice is unable to produce a valid signature on a message not
previously submitted to the signing oracle [17]. In this paper, we are interested
in secure yet efficient signature schemes. By efficiency, we mean here that the
signing process should be as fast as possible. This leads us to the paradigm of
on-line/off-line signatures introduced by Even et al. [10] and later improved by
Shamir and Tauman [24]. See also [7] for a unifying paradigm encompassing the
two approaches.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 98–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Efficient On-Line/Off-Line Signature Scheme 99

In an on-line/off-line signature scheme, the signing process is subdivided into
two phases. The first phase, performed off-line, is independent of the message to
be signed. The second phase, performed on-line, takes on input a value precom-
puted in the off-line phase and a message and produces a signature. Only the
on-line phase is required to be fast. Many applications can afford slower com-
putations as long as they are not performed on-line. Examples include a server
pre-computing values at idle time or a low-end smart card with pre-computed
values stored in memory. In the latter case, the pre-computed values are some-
times referred to as ‘use & throw coupons’ [22]. See also [27] for applications in
routing protocols.

The so-called GPS signature scheme [16] (see also [15,23]), obtained from the
companion identification scheme using the Fiat-Shamir heuristic [11], is one of the
most efficient on-line/off-line signature schemes. The on-line phase boils down to
the computation of a small integer (i.e., non-modular) multiplication. However,
being built via the Fiat-Shamir heuristic, the security of the GPS signature scheme
stands in the random oracle model [2]. The random oracle model is an idealized
model assuming that the output of a hash function behaves as a random generator.
Although guaranteeing that the general design should not be flawed, a proof in the
random oracle model cannot be considered as an absolute proof. In [5,6], Canetti
et al. show that there exist signature schemes secure in the random oracle model
but for which no secure implementations do exist.

Several efficient on-line/off-line signature schemes in the standard model (i.e.,
without random oracles) are known [24,3,21,8,28] but none of them features
the very fast on-line-phase of the GPS signature scheme. This paper fills the gap
and provides such a scheme. The proposed on-line/off-line signature scheme even
outperforms the GPS signature scheme for short messages since no prior hashing
is required. Moreover, combined with [14], it yields a very efficient identity-based
on-line/off-line signature scheme. We note that the GPS signature scheme has
been standardized by ISO/IEC in 2008 [20].

The rest of this paper is organized as follows. In the next section, we introduce
some definitions. In Section 3, we present our on-line/off-line signature scheme.
Then, in Section 4, we prove its security and analyze its performance. Finally,
we conclude in Section 5.

2 Preliminaries

2.1 Signature Schemes

A signature scheme is a triplet, (Gen, Sign, Verify), of probabilistic polynomial-
time algorithms satisfying:

1. Key generation algorithm Gen. On input security parameter k, algorithm Gen
produces a pair (pk, sk) of matching public and private keys.

2. Signing algorithm Sign. Given a message m in a set M of messages and a pair
of matching public and private keys (pk, sk), Sign produces a signature σ.



100 M. Joye

3. Verification algorithm Verify. Given a signature σ, a message m ∈ M and a
public key pk, Verify checks whether σ is a valid signature on m with respect
to pk.

As aforementioned, the classical notion for the security of signature schemes is
existential unforgeability against chosen-message attacks (in short, EUF-CMA).

Definition 1. A signature scheme (Gen, Sign, Verify) is said secure if the success
probability

SuccEUF-CMA(A) := Pr
[

(pk, sk)← Gen(1k), (m∗, σ∗)← ASign(sk;·)(pk) :
Verify(pk; m∗, σ∗) = true

]
is negligible, for every probabilistic polynomial-time adversary A having access
to signing oracle Sign(sk; ·), and returning a valid signature σ∗ on a message m∗
that was not submitted to the signing oracle.

When the signing algorithm is probabilistic, a setting slightly more general than
the single-occurrence chosen-message attack scenario can be considered [25].
The corresponding security notion is referred to as strong unforgeability against
chosen-message attacks (sEUF-CMA).

Definition 2. A signature scheme (Gen, Sign, Verify) is said [strongly] secure if
the success probability

SuccsEUF-CMA(A) := Pr
[
(pk, sk)← Gen(1k), (m∗, σ∗)← ASign(sk;·)(pk) :

Verify(pk; m∗, σ∗) = true

]
is negligible, for every probabilistic polynomial-time adversary A having access
to signing oracle Sign(sk; ·), and returning a valid signature σ∗ on a message
m∗ where (m∗, σ∗) is different from all pairs (mi, σi) of chosen messages mi

submitted to the signing oracle and corresponding signatures σi returned by the
signing oracle.

2.2 Intractability Assumptions

Typically, the security of a signature scheme is conditioned to some intractability
assumptions. For the proposed scheme, we will rely on the strong RSA assump-
tion [1,13] and the short exponent discrete logarithm assumption [26] (also used
in the GPS signature scheme).

Definition 3. The strong RSA assumption (sRSA) is that it is hard, on input
a safe1 RSA modulus N and a random element s ∈ Z∗

N , to find a pair (u, r) ∈
ZN × Z>1 satisfying s ≡ ur (mod N). More formally, the success probability of
any probabilistic polynomial-time adversary A:

Pr
[
N ← sRSA(1k), s← Z∗

N , (u, r)← A(N, s) : ur ≡ s (mod N) ∧ r > 1
]

is negligible.
1 An RSA modulus N = pq is said safe when prime p = 2p′ + 1 and prime q = 2q′ + 1

for some primes p′ and q′.



An Efficient On-Line/Off-Line Signature Scheme 101

Definition 4. The short exponent discrete logarithm assumption (sDL) is that
it is hard, on input a safe RSA modulus N , a random element s ∈ Z∗

N and
v = sz mod N for a [small] integer z, to recover the value of z. More formally,
the success probability of any probabilistic polynomial-time adversary A:

Pr
[
(N, z)← sDL(1k), s← Z∗

N , v ← sz mod N, z′ ← A(N, s, v) : z′ = z
]

is negligible.

3 Proposed On-Line/Off-Line Signature Scheme

Let �N , �Z , �S, �E , �H and �K be six security parameters, satisfying

�N ≥ 2(�E + 2), b(�E − 1) ≥ �K + 1, �N − 4 ≥ �K ≥ �Z + �H + �S (1)

for an integer b ≥ 1. (Typical values for the security parameters are discussed in
§ 4.2.)

The message space is defined as M = {0, 1}�H , which can also be viewed as
the set of integers in the range [0, 2�H − 1].

Key Generation. Choose two random primes p = 2p′+1 and q = 2q′+1 where
p′ and q′ are primes of equal length, so that N = pq is of length exactly �N .
Choose at random two quadratic residues g and x in Z∗

N . Finally, for a
random �Z-bit integer z, compute h = g−z mod N .

The public key is pk = {g, h, x, N} and the private key is sk = {p, q, z}.

Signing. Let m ∈ M denote the message being signed.

– [Off-line phase] Randomly pick an �K-bit integer t and an �E-bit prime e.
Next compute

y = (x g−t)d mod N where d = e−b mod p′q′ . (2)

– [On-line phase] From a triplet (t, y, e) computed off-line, evaluate

k = t + m z . (3)

and return the signature σ = (k, y, e).

Verification. Signature σ = (k, y, e) on message m ∈M is accepted iff

1. e is an odd �E-bit integer,
2. k is an �K-bit integer, and

3. yeb

gk hm ≡ x (mod N).



102 M. Joye

As for the Cramer-Shoup signature scheme [9] and its derivatives [29,4,12], there
is no need to check the primality of e in the verification algorithm. Observe also
that the use of a prime power in Eq. (2) as in [12,18] — rather than simply a
prime— speeds up the off-line phase but also reduces the length of the resulting
signatures. Moreover, the use of a small value for z as in [16] speeds up the
on-line phase and reduces the length of the signatures; in contrast, the schemes
in [8,28] require a multiplication by a full-size integer in the on-line phase.

We note there is no hash function involved in the signing process. Long mes-
sages can however be dealt with by first reducing their length to the appropriate
range using a collision-resistant function H : {0, 1}∗ →M.

4 Analysis

In this section, we show that our signature scheme is strongly secure under the
strong RSA assumption and the short exponent discrete logarithm assumption
(see Section 2). We also analyze its performance.

4.1 Proof of Security

Assume that there exists a polynomial-time chosen-message attacker A, allowed
to make qS queries to a signing oracle OΣ , that is able to produce a signa-
ture forgery. For i ∈ {1, . . . , qS}, we let mi be the ith message queried to OΣ

and σi = (ki, yi, ei) the ith corresponding signature returned by OΣ . We let
σ∗ = (k∗, y∗, e∗) denote the forgery returned by A on a message m∗ ∈ M and
(m∗, σ∗) �= (mi, σi) for all i ∈ {1, . . . , qS}. We will show that the existence of
attacker A contradicts a cryptographic assumption (namely, the strong RSA as-
sumption or the short exponent discrete logarithm assumption), which proves
the security of the scheme.

We distinguish 3 types of attackers.

Type Ia: e∗ = eı̂ and y∗ �= yı̂, for some ı̂ ∈ {1, . . . , qS}.
In this case, we show that A can be used to solve the (safe) RSA problem.
That is, given a safe RSA modulus N , an �E-bit prime r ∈ Z∗

φ(N) and a
random element s ∈ Z∗

N , we want to find u such that u ≡ s1/r (mod N).2

– We randomly pick ı̂ ∈ {1, . . . , qS}. For all i ∈ {1, . . . , qS}, i �= ı̂, we let
ei be a random �E-bit prime; we also set eı̂ = r. We assume that for all
i ∈ {1, . . . , qS}, i �= ı̂, we have ei �= r, which occurs with overwhelming
probability. We create the public key pk = {g, h, x, N} with

g = s2
�

i�=ı̂ ei
b

mod N, h = g−z mod N, x = w2
�

i ei
b

gtı̂ mod N

where z is a random �Z-bit integer, w is a random element in Z∗
N and tı̂

is a random �K-bit integer.
– The signing oracle can be simulated as follows. On input a message

mj ∈M, j ∈ {1, . . . , qS}, we return
2 Note that such an attacker also breaks the strong RSA assumption.



An Efficient On-Line/Off-Line Signature Scheme 103

• σı̂ = (kı̂, yı̂, eı̂) if j = ı̂, with

kı̂ = tı̂ + mı̂ z, yı̂ = w2
�

i�=ı̂ ei
b

mod N ;

• σj = (kj , yj, ej) otherwise, with

kj = tj + mj z, yj = w2
�

i�=j ei
b

s2(tı̂−tj)
�

i�=j,ı̂ ei
b

mod N

where tj is a random �K-bit integer.
– Let σ∗ = (k∗, y∗, e∗) with e∗ = eı̂ = r be the signature forgery on a

message m∗ ∈ M, returned by A. Letting t∗ = k∗ − m∗ z and ν =
2(tı̂ − t∗)

∏
i�=ı̂ ei

b, we have

(y∗
yı̂

)rb

≡ gkı̂−k∗ hmı̂−m∗ ≡ sν (mod N) .

Moreover, we have tı̂ �= t∗ as otherwise we would have (y∗/yı̂)rb ≡ 1
(mod N) and thus y∗ = yı̂ since gcd(rb, 2p′q′) = 1, a contradiction. As a
result, we have gcd(rb, ν) = gcd(rb, tı̂−t∗) = rρ for some ρ ∈ {0, . . . , b−1}
since prime power rb > |tı̂ − t∗|. Hence, by the extended Euclidean algo-
rithm, we can find integers α and β such that α rb +β ν = rρ. This implies

s ≡ sα rb−ρ+β ν
rρ ≡

(
sα
(y∗

yı̂

)β
)rb−ρ

(mod N) .

Consequently, u :=
(
sα (y∗/yı̂)β

)rb−ρ−1

mod N solves the RSA problem:
u ≡ s1/r (mod N). ��

Type Ib: e∗ = eı̂ and y∗ = yı̂, for some ı̂ ∈ {1, . . . , qS}.
In this case, we show that A can be used to solve the short exponent discrete
logarithm problem. That is, given a safe RSA modulus N , a random element
s ∈ Z∗

N and v = sz mod N for an �Z-bit integer z, we want to recover the
value of z.

– For all i ∈ {1, . . . , qS}, we let ei be a random �E-bit prime. We create
the public key pk = {g, h, x, N} with

g = s2
�

i ei
b

mod N, h = v−2
�

i ei
b

mod N, x = w2
�

i ei
b

mod N

where w is a random element in Z∗
N .

– On input message mj ∈M, j ∈ {1, . . . , qS}, we simulate the signing ora-
cle by choosing a random �K-bit integer kj and returning σj = (kj , yj , ej)
with

yj =
(
s−kj vmj w

)2�i�=j ei
b

mod N .

– Let σ∗ = (k∗, y∗, e∗) with y∗ = yı̂ and e∗ = eı̂ be the signature forgery
on a message m∗ ∈ M, returned by A. As both σ∗ and σı̂ are valid
signatures, we have gk∗ hm∗ ≡ gkı̂ hmı̂ (mod N) and so



104 M. Joye

k∗ − z m∗ ≡ kı̂ − z mı̂ (mod p′q′)
noting that h = g−z mod N . Given the definition ranges, the above
relation does hold over the integers. Hence, we have k∗−kı̂ = z(m∗−mı̂).
Moreover, we have m∗ �= mı̂ as otherwise we would have k∗ = kj and
thus (m∗, σ∗) = (mı̂, σı̂), a contradiction. Therefore, we get

z =
k∗ − kı̂

m∗ −mı̂
,

the discrete logarithm of v w.r.t. s. ��
Type II: e∗ �= ei for all i ∈ {1, . . . , qS}.

In this case, we show that A can be used to solve the flexible RSA problem
(a.k.a. strong RSA problem). That is, given a safe RSA modulus N and a
random element s ∈ Z∗

N , we want to find (u, r) such that s ≡ ur (mod N)
and r > 1.
– For all i ∈ {1, . . . , qS}, we let ei be a random �E-bit prime. We create

the public key pk = {g, h, x, N} with

g = s2
�

i ei
b

mod N, h = g−z mod N, x = ga mod N

where z is a random �Z -bit integer and a is a random integer in {1, . . . ,
N2}.

– On input message mj ∈M, j ∈ {1, . . . , qS}, we simulate the signing ora-
cle by choosing a random �K-bit integer tj and returning σj = (kj , yj , ej)
with

yj =
(
s2
�

i�=j ei
b
)a−tj

mod N, kj = tj + mj z .

– Let σ∗ = (k∗, y∗, e∗) be the signature forgery on a message m∗ ∈ M,
returned by A. Letting ν = 2(a− k∗ + z m∗)

∏
i ei

b, we have

y∗
e∗

b ≡ x g−k∗ h−m∗ ≡ sν (mod N) .

Since e∗ is an odd �E-bit integer and e∗ �= ei for all i ∈ {1, . . . , qS}, it
follows that δ := gcd(e∗b, ν) = gcd(e∗b, a − k∗ + z m∗). Hence, by the
extended Euclidean algorithm, we can find integers α and β such that
α e∗

b

δ + β ν
δ = 1, which, noting that gcd(δ, 2p′q′) = 1, implies

s ≡ sα e∗b

δ +β ν
δ ≡ sα e∗b

δ y∗
β e∗b

δ ≡ (sα y∗
β)

e∗b

δ (mod N) .

If we set u := sα y∗
β mod N and r := e∗

b/δ then (u, r) is a solution
to the flexible RSA problem, provided that r �= 1. Since a is chosen in
{1, . . . , N2} and since attacker A knows at best the value of a mod p′q′

from x, the probability that r = 1, or equivalently, that e∗
b | (a − k∗ +

z m∗) is negligible. ��

4.2 Efficiency Analysis

The proposed signature scheme involves several parameters, namely �N , �Z , �S ,
�E , �H and �K . We discuss below how to choose those parameters in order to
get an adequate security. Our analysis is based on [16].



An Efficient On-Line/Off-Line Signature Scheme 105

The security of the proposed signature scheme relies on the strong RSA assump-
tion and the short exponent discrete logarithm assumption. Although in principle
easier than the factoring problem, the best known way to solve the strong RSA
problem consists in factoring the modulus. Therefore, an RSA modulus of length
at least 1536 bits, or equivalently �N ≥ 1536, should validate the strong RSA as-
sumption. Likewise the most efficient methods for computing short exponent dis-
crete logarithms are in the square root of the size of the exponent. Hence, choosing
�Z ≥ 160 should prevent the recovery of secret parameter z. Parameter �S must
be chosen so as �K � �Z+�H in order to guarantee the statistical zero-knowledge
property; as in [16], we advise to set �S ≥ 80. Finally, the length for prime e,
�E , in the signing algorithm is subject to the requirement that it should be very
unlikely to generate twice the same prime. To avoid such birthday attacks, the
bit-length of prime e must be (roughly) at least κ + log2 qS to offer a κ-bit se-
curity, where qS is the maximum number of allowed signature queries [19]. As
a result, assuming qS ≈ 230, setting �E ≥ 128 appears to be a safe choice. The
remaining parameters (i.e., �K and �H) must be chosen so as to satisfy Eq. (1).

Typically, if we choose �N = 1536, �Z = 160, �S = 80 and �E = 128, Eq. (1)
yields

127b− 1 ≥ �K ≥ 240 + �H .

Hence, assuming we are signing 256-bit messages (or longer messages using a
standard hash function like SHA-256) — that is, �H = 256, we can set b = 4
and �K = 496. So, for 1536-bit RSA moduli, a signature will be of length 2160
bits. But the main advantage of the proposed scheme resides in the efficacy of
the on-line phase (cf. Eq. (3)). It only requires a small integer multiplication
for obtaining k = t + m z. Both m (or a hashed value thereof) and z are short
values; namely, of 256 and 160 bits with the above exemplary values — hence
for those values, the evaluation of k basically costs 640 single-precision integer
multiplications on a low-end 8-bit processor with the basic schoolboy method.

5 Conclusion

This paper proposed an efficient on-line/off-line signature scheme. Advanta-
geously, the proposed scheme features a very fast on-line phase: only a single
small integer multiplication is required. We note that this is slightly faster than
the GPS signature scheme, at least for short messages. This property is espe-
cially desired for time-constrained applications and for low-end devices that do
not have much in the way computational resources. Furthermore and contrarily
to the GPS signature scheme, the security proof stands in the standard model
(i.e., without random oracles).

Acknowledgments

We thank the anonymous reviewers for useful comments.



106 M. Joye

References

1. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press, New York (1993)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2004); An
extended abstract appears in Eurocrypt 2004

4. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pp.
209–217. ACM Press, New York (1998)

6. Canetti, R., Goldreich, O., Halevi, S.: On the random oracle methodology as ap-
plied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40–57. Springer, Heidelberg (2004)

7. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signa-
tures; theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)

8. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

9. Cramer, R., Shoup, V.: Signature scheme based on the strong RSA assumption.
ACM Transactions on Information and System Security 3(3), 161–185 (2000)

10. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of
Cryptology 9(1), 35–67 (1996); A preliminary version appears in Crypto 1989

11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

12. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In:
Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg
(2002)

13. Fujisaki, E., Okamoto, T.: Statistical zero-knowledge protocols to prove modular
polynomial equations. In: Kaliski Jr., B. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

14. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

15. Girault, M.: Self-certified signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

16. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology 19(4), 463–
487 (2006)

17. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen message attacks. SIAM Journal of Computing 17(2), 281–308
(1988)



An Efficient On-Line/Off-Line Signature Scheme 107

18. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 50–65. Springer, Heidelberg (2005)
19. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:

Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

20. ISO/IEC 14888-2. Information technology – Security techniques – Digital signa-
tures with appendix – Part 2: Integer factorisation based mechanisms, 2nd edn.,
April 15 (2008)

21. Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without
random oracles. In: Yung, M., et al. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346.
Springer, Heidelberg (2006)

22. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
Complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

23. Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentica-
tion and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 422–436. Springer, Heidelberg (1998)

24. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

25. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002)

26. van Oorschot, P.C., Wiener, M.: On Diffie-Hellman key agreement with short ex-
ponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343.
Springer, Heidelberg (1996)

27. Xu, S., Mu, Y., Susilo, W.: Online/offline signatures and multisignatures for AODV
and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006.
LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)

28. Yu, P., Tate, S.R.: Online/offline signature schemes for devices with limited com-
puting capabilities. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 301–
317. Springer, Heidelberg (2008)

29. Zhu, H.: New digital signature scheme attaining immunity against adaptive chosen
message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)



On the Security of Online/Offline Signatures and
Multisignatures from ACISP’06

Fagen Li1,2,3, Masaaki Shirase1, and Tsuyoshi Takagi1

1 School of Systems Information Science,
Future University-Hakodate, Hakodate 041-8655, Japan

2 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 610054, China

3 State Key Laboratory of Information Security,
Graduate School of Chinese Academy of Sciences, Beijing 100049, China

fagenli@fun.ac.jp

Abstract. Efficient authentication in routing protocols is one of the
most important problems for security of ad hoc networks. In ACISP’06,
Xu, Mu, and Susilo proposed an identity-based online/offline signature
scheme for authentication in the AODV protocol and then transformed
this scheme to an identity-based multisignature scheme which is suitable
for the DSR protocol. In this paper, we show that their schemes cannot
achieve the claimed security by demonstrating a forgery attack. In this
attack, an adversary can forge a valid signature on any messages. There-
fore, their signature schemes cannot guarantee the security of AODV and
DSR protocols. We also show that their generic construction of identity-
based multisignature from identity-based online/offline signature is not
secure.

Keywords: Mobile ad hoc networks, identity-based cryptography,
Online/offline signature, multisignature, forgery attack.

1 Introduction

Mobile ad hoc networks (MANETs) have wireless links and work independently
of fixed infrastructure. They are self-organizing and self-configuring. The wireless
nodes operate both as communication end-points as well as routers, enabling
multi-hop wireless communication. The wireless devices imply limited power
resources and bandwidth. Network topology may change rapidly due to mobility,
interference, physical obstacles on the path, and so forth [11]. MANET is very
useful in instant consultation between mobile users in the battlefields, emergency,
and disaster situations, and so on. However, the wireless and dynamic nature of
MANETs leave them more vulnerable to security attacks than wired networks.
How to solve the security problem in MANETs has been a active research field
in recent years.

The concept of identity-based (ID-based) cryptography was first introduced
by Shamir in 1984 [23]. The basic idea behind an ID-based cryptosystem is that

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 108–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On the Security of Online/Offline Signatures 109

users can choose arbitrary strings, for example their email addresses or other on-
line identifiers, as their public keys. The corresponding private keys are created
by binding the identity with a master private key of a trusted authority (called
private key generator (PKG)). This eliminates much of the overhead associated
with key management. Several practical ID-based signature schemes have been de-
vised since 1984 [7,10] but a satisfying ID-based encryption scheme only appeared
in 2001 [2]. It was devised by Boneh and Franklin and cleverly uses bilinear maps
(the Weil or Tate pairing) over supersingular elliptic curves. ID-based cryptog-
raphy is more suitable for MANETs than traditional PKI schemes since it does
not need to authenticate public keys and to maintain a public key directory. Sev-
eral security schemes for MANETs using ID-based cryptography have been pro-
posed, such as key management schemes [4,13,16,17], authenticated broadcasting
schemes [1], multi-domain MANETs [18], and routing protocols[5,20,21].

The notion of online/offline signature was introduced by Even, Goldreich, and
Micali [6]. In such schemes, the signature generation procedure is divided into two
phases. The first phase is performed offline (before the message to be signed is
given) and the second phase is performed online (after the message to be signed
is given). To achieve efficient performance, the costly computation is shifted
to the offline part. Online/offline signature schemes are particularly useful in
resource-constrained environment. An ID-based online/offline signature scheme
was proposed by Xu, Mu, and Susilo in 2005 [24].

Itakura and Nakamura [14] introduced the first multisignature scheme in
which multiple signers can cooperate to sign the same message and any ver-
ifier can verify the validity of the multisignature. In general, the size of the
multisignature is independent of the number of the signers. The multisignature
can be generated in parallel manner and serial manner. In 2006, Gangishetti
et al. [9] proposed ID-based parallel and serial multisignature schemes using
bilinear pairings.

In ACISP’06, Xu, Mu, and Susilo [25] proposed an ID-based online/offline
signature scheme for authentication in the AODV protocol [22] and then trans-
formed this scheme to an ID-based multi-signature scheme which is suitable for
the DSR protocol [15]. However, in this paper, we show that their schemes cannot
achieve the claimed security by demonstrating a forgery attack. In this attack, an
adversary can forge a valid signature on any messages. Therefore, their signature
schemes cannot guarantee the security of AODV and DSR protocols. We also
show that their generic construction of ID-based multisignature from ID-based
online/offline signature is not secure.

The rest of this paper is organized as follows. We introduce the bilinear pair-
ings in Section 2. We show that the Xu-Mu-Susilo ID-based online/offline signa-
ture scheme is not secure in Section 3. We show that the Xu-Mu-Susilo ID-based
multisignature scheme is not secure in Section 4. We show that the Xu-Mu-Susilo
generic construction of ID-based multisignature from ID-based online/offline sig-
nature is not secure in Section 5. The application of ID-based multisignature to
DSR protocol is described in Section 6. Finally, the conclusions are given in
Section 7.



110 F. Li, M. Shirase, and T. Takagi

2 Preliminaries

In this section, we briefly describe the basic definition and properties of the
bilinear pairings.

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map ê : G1 ×G1 → G2 with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1, a, b ∈ Zq.
2. Non-degeneracy: There exists P and Q ∈ G1 such that ê(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute ê(P, Q) for all

P ,Q ∈ G1.

Some mathematical problems in G1 is described as follows.

– Discrete Logarithm Problem (DLP): Given two group elements P and Q, to
find an integer x ∈ Z∗

q , such that Q = xP whenever such an integer exists.
– Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈

Z∗
q , to compute abP .

– Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗

q , to decide whether c ≡ ab mod q.

The CDHP and DLP are assumed to be intractable. When the DDHP is easy
while the CDHP is still believed to be hard on the group G1, we call G1 a Gap
Diffie- Hellman (GDH) group. Such groups can be found on supersingular elliptic
curves or hyperelliptic curves over finite field, and the bilinear parings can be
derived from the Weil or Tate pairing. We can refer to [2,3,12] for more details.
The security of the Xu-Mu-Susilo schemes [25] rely on the hardness of the CDHP
problem.

3 Security of ID-Based Online/Offline Signature Scheme

In this section, we briefly describe the security model of ID-based online/offline
signature schemes. Then we review the Xu-Mu-Susilo ID-based online/offline
signature scheme [25]. Finally, we show that their scheme is not secure.

3.1 Security Model

An ID-based online/offline signature scheme consists of the following five
algorithms.

– Setup: is a probabilistic algorithm run by a PKG that takes as input a
security parameter k to output system parameters params and a master key
s that is kept secret.

– Extract: is a key generation algorithm run by the PKG that takes as input
the system parameters params, the master key s and an identity ID, and
returns the corresponding private key DID.



On the Security of Online/Offline Signatures 111

– OffSign: is a probabilistic algorithm that takes as input the system parame-
ters params and a signature key DID, and outputs an offline
signature S.

– OnSign: is a probabilistic algorithm that takes as input a message m and
an offline signature S, and returns an online signature σ.

– Verify: is a deterministic algorithm that takes as input (ID, m, S, σ), and
returns either accept or reject.

For the unforgeability, we consider the following game played between a chal-
lenger A and an adversary F .

– Initial: The challenger A runs the Setup algorithm to generate the system
parameters params and sends it to the adversary F .

– Attack: The adversary F performs the following queries:
• Key extraction query: F produces an identity ID and receives corre-

sponding private key DID.
• Offline signature query: F produces an identity ID, and receives an

offline signature generated by offline signature oracle using the private
key corresponding to ID.

• Online signature query: F produces a message m, and receives an online
signature generated by online signature oracle. The online signature is
corresponding to the offline signature.

– Forgery: After performing a polynomial number of queries, F produces
a triple (ID∗, m∗, S∗, σ∗) made of an identity ID∗, whose private key was
never asked in key extraction queries. Besides, the pair (ID∗, m∗) was never
asked in online/offline signature queries. F wins if the Verify algorithm
accepts the triple (ID∗, m∗, S∗, σ∗).

The advantage of F is defined as the probability that it wins.

Definition 1. An adversary F is said to be an (ε, t, qe, qs)-forger of an ID-based
online/offline signature if F has advantage at least ε in the above game, runs
in time at most t, and makes at most qe and qs key extraction and signature
queries, respectively. A scheme is said to be (ε, t, qe, qs)-existentially unforgeable
if no (ε, t, qe, qs)-forger exists.

Remark: The security model is not reasonable since it require two signature
oracles. We should combine the offline signature query and online signature
query into one signature query.

3.2 The Xu-Mu-Susilo Scheme

The Xu-Mu-Susilo ID-based online/offline signature scheme consists of the fol-
lowing five algorithms.

– Setup: Given a security parameter k, the PKG chooses groups G1 and G2
of prime order q (with G1 additive and G2 multiplicative), a generator P of
G1, a bilinear map ê : G1 ×G1 → G2, and hash functions H0 : {0, 1}∗ → G1



112 F. Li, M. Shirase, and T. Takagi

and H1 : {0, 1}∗ → Z∗
q . The PKG chooses a master key s ∈ Z∗

q ran-
domly and computes Ppub = sP . The PKG publishes system parameters
{G1, G2, q, ê, P, Ppub, H0, H1} and keeps the master key s secret.

– Extract: Given an identity ID, the PKG computes QID = H1(ID) and the
private key DID = sQID. Then the PKG sends the private key to its owner
in a secure way.

– OffSign: The signer chooses r, x ∈ Z∗
q randomly and computes the offline

signature pair (S, R), where S = DID − xPpub and R = rP .
– OnSign: In order to sign a message m, the signer computes the online sig-

nature σ = H1(m)r + x. The resulting signature is a triple (S, σ, R).
– Verify: An online/offline signature (S, σ, R) of a message m for identity ID

is accepted if and only if the following equation holds:

ê(S + σPpub, P ) = ê(QID + H1(m)R, Ppub).

3.3 Our Analysis

We show that the Xu-Mu-Susilo ID-based online/offline signature scheme is not
secure in their model. An adversary can forge a valid signature on any messages.
To forge a signature (ID∗, m∗, S∗, σ∗, R∗), F first chooses another message m′

and performs the online/offline signature queries under identity ID∗. When F
receives the signature (ID∗, m′, S′, σ′, R′), it performs the following steps.

1. Compute σ∗ = H1(m∗)H1(m′)−1σ′.
2. Compute S∗ = H1(m∗)H1(m′)−1S′.
3. Compute R∗ = H1(m′)−1QID∗ + R′ −H1(m∗)−1QID∗ .

The following equations show that the signature (ID∗, m∗, S∗, σ∗, R∗) is valid.

ê(S∗ + σ∗Ppub, P )
= ê(H1(m∗)H1(m′)−1S′ + H1(m∗)H1(m′)−1σ′Ppub, P )

= ê(S′ + σ′Ppub, P )H1(m∗)H1(m′)−1

= ê(QID∗ + H1(m′)R′, Ppub)H1(m∗)H1(m′)−1

= ê(H1(m∗)H1(m′)−1QID∗ + H1(m∗)R′, Ppub)
= ê(H1(m∗)H1(m′)−1QID∗ + H1(m∗)R′ −QID∗ + QID∗ , Ppub)
= ê(H1(m∗)H1(m′)−1QID∗ + H1(m∗)R′ −H1(m∗)H1(m∗)−1QID∗ + QID∗ , Ppub)
= ê(H1(m∗)(H1(m′)−1QID∗ + R′ −H1(m∗)−1QID∗) + QID∗ , Ppub)
= ê(H1(m∗)R∗ + QID∗ , Ppub)
= ê(QID∗ + H1(m∗)R∗, Ppub)

Therefore, F forge a valid signature (S∗, σ∗, R∗) on message m∗. That is, the Xu-
Mu-Susilo ID-based online/offline signature scheme is not existentially
unforgeable.



On the Security of Online/Offline Signatures 113

4 Security of ID-Based Multisignature Scheme

In this section, we briefly describe the security model of ID-based multisignature
scheme. Then we review the Xu-Mu-Susilo ID-based multisignature scheme [25].
Finally, we show that their scheme is not secure.

4.1 Security Model

Xu, Mu, and Susilo extended the definition of accountable subgroup multisigna-
ture (ASM) [19] to ID-based ASM. In [19], the ASM is any subgroup Gsub of a
given group G of potential signers, who sign a message.

An ID-based multisignature scheme consists of the following four algorithms.
Here we assume that the group Gsub consists of L signers.

– Setup: is a probabilistic algorithm run by a PKG that takes as input a
security parameter k to output system parameters params and a master key
s that is kept secret.

– KeyGen: is a key generation algorithm run by the PKG that takes as input
the system parameters params, the master key s, a subgroup Gsub, and an
identity ID, and returns the corresponding private key DID.

– Sign: is a probabilistic algorithm that takes as input a description of sub-
group Gsub, the identity of each member in Gsub, a message m, and each
signer’s private key DIDi , and outputs a multisignature σ.

– Verify: is a deterministic algorithm that takes as input the description of
subgroup Gsub, the identity of each member in Gsub, the message m, and
the multisignature σ, and returns either accept or reject.

For the unforgeability, we consider the following game played between a chal-
lenger A and an adversary F . Here S ⊆ G is a subgroup of a given group G.

– Initial: The challenger A runs the Setup algorithm to generate the system
parameters params and sends it to the adversary F .

– Attack: The adversary F performs the following queries:
• Key generation query: F produces an identity ID of the uncorrupted

player in S and receives corresponding private key DID and its tempo-
rary signature commitment S for current signature session.

• Signature query: F produces a message m, and receives a signature gen-
erated by signature oracle using the private key corresponding to ID.

– Forgery: After performing a polynomial number of queries, F produces a
triple (m∗, σ∗, S∗) such that
• σ∗ is a valid signature on the message m by the subgroup S of players.
• there exists an uncorrupted player P ∗ ∈ S who has never been asked by
F to execute the signature query on m∗ and S∗.

F wins if the Verify algorithm accepts the triple (m∗, σ∗, S∗).

The advantage of F is defined as the probability that it wins.



114 F. Li, M. Shirase, and T. Takagi

Definition 2. An adversary F is said to be an (ε, t, qe, qs)-forger of an ID-based
multisignature signature if F has advantage at least ε in the above game, runs
in time at most t, and makes at most qe and qs key extraction and signature
queries, respectively. A scheme is said to be (ε, t, qe, qs)-existentially unforgeable
if no (ε, t, qe, qs)-forger exists.

4.2 The Xu-Mu-Susilo Scheme

The Xu-Mu-Susilo ID-based multisignature scheme consists of the following four
algorithms.

– Setup: Given a security parameter k, the PKG chooses groups G1 and G2
of prime order q (with G1 additive and G2 multiplicative), a generator P of
G1, a bilinear map ê : G1 ×G1 → G2, and hash functions H0 : {0, 1}∗ → G1
and H1 : {0, 1}∗ → Z∗

q . The PKG chooses a master key s ∈ Z∗
q ran-

domly and computes Ppub = sP . The PKG publishes system parameters
{G1, G2, q, ê, P, Ppub, H0, H1} and keeps the master key s secret.

– KeyGen: For each player Pi(1 ≤ i ≤ L) with identity IDi in G, the PKG
computes QIDi = H1(IDi) and the private key DIDi = sQIDi . Then the
PKG sends the private key to its owner in a secure way.

– Sign: Each player Pi(1 ≤ i ≤ L) in G performs the following steps:

1. Chooses ri, xi ∈ Z∗
q randomly.

2. Compute the signature commitment for the current session as Ci =
DIDi − xiPpub, Ri = riP , and Ui = xiP

3. Broadcast (Ci, Ri, Ui) to all the players.

Suppose the players in a subgroup S = {P1, P2, . . . , Pl} want to jointly sign
a message m. Upon receiving (Cj , Rj) from Pj(1 ≤ j ≤ l, j �= i), each
Pi(1 ≤ i ≤ l) performs the following steps:

1. Check if the following equation holds:

ê(Cj , P ) = ê(QIDj − Uj, Ppub).

2. Compute C̃ =
∑l

j=1 Cj and R̃ =
∑l

j=1 Rj .
3. Compute the signature as

(a) Each Pi computes the signature σi = H1(m)ri + xi and broadcasts
to Pj(1 ≤ j ≤ l, j �= i).

(b) Upon receiving all the σj , Pi computes σ̃ =
∑l

j=1 σj .

The resulting multisignature for message m is (σ̃, C̃, R̃). To further reduce
the signature size, we combine σ̃ and C̃ to obtain a new parameter Ṽ by

Ṽ = C̃ + σ̃Ppub.

The final signature is a pair (Ṽ , R̃).



On the Security of Online/Offline Signatures 115

– Verify: An multisignature signature (Ṽ , R̃) of a message m for subgroup S
is accepted if and only if the following equation holds:

ê(Ṽ , P ) = ê(
l∑

i=1

QIDi + H1(m)R̃, Ppub).

4.3 Our Analysis

We show that the Xu-Mu-Susilo ID-based multisignature scheme is not secure in
their model. An adversary can forge a valid signature on any messages. To forge
a signature (Ṽ ∗, R̃∗) of message m∗ for subgroup S∗, F first chooses another
message m′ and performs the signature query under subgroup S∗. When F
receives the signature (Ṽ ′, R̃′), it performs the following steps.

1. Compute Ṽ ∗ = H1(m∗)H1(m′)−1Ṽ ′.
2. Compute R̃∗ = H1(m′)−1∑l

i=1 QID∗
i

+ R̃′ −H1(m∗)−1∑l
i=1 QID∗

i
.

The following equations show that the signature (Ṽ ∗, R̃∗) is valid.

ê(Ṽ ∗, P )
= ê(H1(m∗)H1(m′)−1Ṽ ′, P )

= ê(Ṽ ′, P )H1(m∗)H1(m′)−1

= ê(
l∑

i=1

QID∗
i

+ H1(m′)R̃′, Ppub)H1(m∗)H1(m′)−1

= ê(H1(m∗)H1(m′)−1
l∑

i=1

QID∗
i

+ H1(m∗)R̃′, Ppub)

= ê(H1(m∗)H1(m′)−1
l∑

i=1

QID∗
i

+ H1(m∗)R̃′ −
l∑

i=1

QID∗
i

+
l∑

i=1

QID∗
i
, Ppub)

= ê(H1(m∗)H1(m′)−1
l∑

i=1

QID∗
i

+ H1(m∗)R̃′ −H1(m∗)H1(m∗)−1
l∑

i=1

QID∗
i

+
l∑

i=1

QID∗
i
, Ppub)

= ê(H1(m∗)(H1(m′)−1
l∑

i=1

QID∗
i

+ R̃′ −H1(m∗)−1
l∑

i=1

QID∗
i
) +

l∑
i=1

QID∗
i
, Ppub)

= ê(H1(m∗)R̃∗ +
l∑

i=1

QID∗
i
, Ppub)

= ê(
l∑

i=1

QID∗
i

+ H1(m∗)R̃∗, Ppub)



116 F. Li, M. Shirase, and T. Takagi

Therefore,F forge a valid signature (Ṽ ∗, R̃∗) on message m∗. That is, the Xu-Mu-
Susilo ID-based multisignature signature scheme is not existentially unforgeable.

5 Security of the Generic Construction

In this section, we review the Xu-Mu-Susilo generic construction of ID-based
multisignature scheme based on the ID-based online/offline signature scheme [25].
Then we show that their construction is not secure.

5.1 The Xu-Mu-Susilo Generic Construction

We describe the generic construction in Figure 1. For simplicity, we call ID-
based online/offline signature and ID-based multisignature IBOS and IBMS,
respectively.

5.2 Our Analysis

We show that the Xu-Mu-Susilo generic construction [25] is not secure in their
model. An adversary can forge a valid signature on any messages. To forge a
signature (C∗, σ∗) of message m∗ for subgroup S∗ = S∗

1 ∪ S∗
2 , F first performs

IBMS.Setup(1k):

1. (s, params) ← IBOS.Setup(1k)

2. Output the master key s and the system parameters params

IBMS.KeyGen(Gsub , IDi, s, params):

1. DIDi ← IBOS.Extract(IDi , s, params)

2. Output the private key DIDi

IBMS.Sign(m, Gsub, DIDi):

1. Ci ← IBOS.OffSign(IDi , DIDi , params)

2. σi ← IBOS.OnSign(m, Ci, IDi, DIDi , params)

3. C ←
�

i∈Gsub
Ci

4. σ ←
�

i∈Gsub
σi

5. Output the signature (C, σ)

IBMS.Verify(m, Gsub, C, σ):

1. Accept or Reject ← IBOS.Verify(m, Gsub, C, σ)

2. Output Accept or Reject

Fig. 1. The Xu-Mu-Susilo generic construction



On the Security of Online/Offline Signatures 117

a signature query on m∗ under subgroup S∗
1 and obtains a signature (C∗

1 , σ∗
1).

Then F performs a signature query on m∗ under subgroup S∗
2 and obtains a

signature (C∗
2 , σ∗

2). Finally, F computes C∗ = C∗
1 + C∗

2 and σ∗ = σ∗
1 + σ∗

2 . It is
obvious that (C∗, σ∗) is a valid signature on the message m∗ under subgroup S∗.
Therefore, the Xu-Mu-Susilo generic construction is not secure. Note that the
Xu-Mu-Susilo ID-based multisignature signature scheme described in Section 4
also suffer form this attack.

6 About the Application to the DSR Protocol

DSR [15] is an on-demand routing protocol that allows nodes to dynamically
discover a source route to any destination in the network. It consists of two
phases: route discovery and route maintenance. When a source node needs to
dynamically find a new route to the destination node, it broadcasts a route
request (RREQ) packet. When the neighbor nodes receive the RREQ, if it is just
the destination of the route discovery or there is the route information in its route
cache to the same destination node, it adds the route information in the route
record of the RREQ and returns a route reply (RREP) packet to the initiate
source node. When the initiator receives this RREP, it caches this route in its
route cache for use in sending subsequent packets to this destination. Otherwise,
if this node receiving the route request has seen another RREQ from the same
initiator to the same destination, or if this node’s own address is already listed in
the route record in the route request, this node discards the request. Otherwise,
this node appends its own address to the route record of the RREQ and relay
the RREQ. The route maintenance mechanism monitors the status of source
routes in use, detects link failures and repairs routes with broken links. Xu, Mu,
and Susilo [25] showed how to apply their ID-based multisignature scheme to
the DSR protocol. However, this paper have showed that their multisignature
scheme is not secure. So, their application to DSR protocol is also not secure.

7 Conclusions

We have showed that the Xu-Mu-Susilo ID-based online/offline signature and
multisignature schemes are not secure in their model. An adversary can forge a
valid signature on any messages. Therefore, their signature schemes cannot guar-
antee the security of AODV and DSR protocols. In addition, their generic con-
struction of ID-based multisignature scheme based on the ID-based online/offline
signature scheme is also not secure. Note that Galindo, Herranz, and Kiltz pro-
posed an generic construction of ID-based online/offline signature in [8].

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and
suggestions. This work is supported by the National Natural Science Foundation



118 F. Li, M. Shirase, and T. Takagi

of China (60673075), the National High Technology Research and Development
Program of China (2006AA01Z428), the State Key Laboratory of Information
Security, and the Youth Science and Technology Foundation of UESTC. Fagen
Li is supported by the JSPS postdoctoral fellowship for research in Japan.

References

1. Bohio, M., Miri, A.: An authenticated broadcasting scheme for wireless ad hoc
network. In: 2nd Annual Conference on Communication Networks and Services
Research-CNSR 2004, Fredericton, Canada, pp. 69–74 (2004)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

4. Deng, H., Mukherjee, A., Agrawal, D.: Threshold and identity-based key manage-
ment and authentication for wireless ad hoc networks. In: International Confer-
ence on Information Technology: Coding and Computing, Las Vegas, NV, USA,
pp. 107–111 (2004)

5. Deng, H., Agrawal, D.P.: TIDS: threshold and identity-based security scheme for
wireless ad hoc networks. Ad Hoc Networks 2(3), 291–307 (2004)

6. Even, S., Goldreich, O., Micali, S.: On-line/off-ine digital signatures. Journal of
Cryptology 9(1), 35–67 (1996)

7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

8. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

9. Gangishetti, R., Gorantla, M.C., Das, M.L., Saxena, A.: Identity based multisig-
natures. Informatica 17(2), 177–186 (2006)

10. Guillou, L., Quisquater, J.J.: A “Paradoxical” Identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

11. Hegland, A.M., Winjum, E., Mjolsnes, S.F., Rong, C., Kure, O., Spilling, P.: A
survey of key management in ad hoc networks. IEEE Communications Surveys &
Tutorials 8(3), 48–66 (2006)

12. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidel-
berg (2003)

13. Hoeper, K., Gong, G.: Key revocation for identity-based schemes in mobile ad hoc
networks. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-NOW 2006. LNCS, vol. 4104,
pp. 224–237. Springer, Heidelberg (2006)

14. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC Research and Development 71, 1–8 (1983)

15. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The Dynamic source routing protocol for
mobile ad hoc networks (DSR). IETF INTERNET DRAFT, MANET working
group, draft-ietf-manet-dsr-10.txt (July 2004)



On the Security of Online/Offline Signatures 119

16. Khalili, A., Katz, J., Arbaugh, W.A.: Toward secure key distribution in truly ad
hoc networks. In: 2003 Symposium on Applications and the Internet Workshops,
Orlando, FL, USA, pp. 342–364 (2003)

17. Li, G., Han, W.: A new scheme for key management in ad hoc networks. In: Lorenz,
P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3421, pp. 242–249. Springer, Heidelberg
(2005)

18. Li, F., Hu, Y., Zhang, C.: An identity-based signcryption scheme for multi-domain
ad hoc networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
373–384. Springer, Heidelberg (2007)

19. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures. In: 8th
ACM Conference on Computer and Communications Security-CCS 2001, Philadel-
phia, USA, pp. 245–254 (2001)

20. Park, B.N., Myung, J., Lee, W.: ISSRP: a secure routing protocol using identity-
based signcryption scheme in ad-hoc networks. In: Liew, K.-M., Shen, H., See, S.,
Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 711–714. Springer, Heidelberg
(2004)

21. Park, B.N., Lee, W.: ISMANET: a secure routing protocol using identity-based
signcryption scheme for mobile ad-hoc networks. IEICE Transactions on Commu-
nications E88-B(6), 2548–2556 (2005)

22. Perkins, C.E., Royer, E.M., Das, S.R.: Ad hoc on-demand distance vector (AODV)
routing. IETF INTERNET DRAFT, MANET working group, Draft-ietf-manet-
aodv-13.txt (February 2003)

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

24. Xu, S., Mu, Y., Susilo, W.: Efficient authentication scheme for routing in mobile ad
hoc networks. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T.
(eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 854–863. Springer, Heidelberg (2005)

25. Xu, S., Mu, Y., Susilo, W.: Online/offline signatures and multisignatures for AODV
and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006.
LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)



A Killer Application for Pairings: Authenticated
Key Establishment in Underwater Wireless

Sensor Networks

David Galindo1,�, Rodrigo Roman2, and Javier Lopez2

1 University of Luxembourg
david.galindo@uni.lu

2 Department of Computer Science, University of Malaga, Spain
{roman,jlm}@lcc.uma.es

Abstract. Wireless sensors are low power devices which are highly con-
strained in terms of computational capabilities, memory, and commu-
nication bandwidth. While battery life is their main limitation, they
require considerable energy to communicate data. The latter is specially
dramatic in underwater wireless sensor networks (UWSN), where the
acoustic transmission mechanisms are less reliable and more energy-
demanding. Saving in communication is thus the primary concern in
underwater wireless sensors. With this constraint in mind, we argue that
non-interactive identity-based key agreement built on pairings provides
the best solution for key distribution in large UWSN when compared to
the state of the art. At first glance this claim is surprising, since pairing
computation is very demanding. Still, pairing-based non-interactive key
establishment requires minimal communication and at the same time
enjoys excellent properties when used for key distribution.

Keywords: identity-based key agreement, underwater wireless sensor
networks, key distribution, pairings.

1 Introduction

Sensors are inexpensive, battery-powered devices which have limited resources. A
wireless sensor node typically consists of a power unit, a sensing unit, a processing
unit, a storage unit and a wireless transmitter and receiver. Security is one of the
principal concerns while designing protocols and mechanisms for wireless sensor
networks (WSN). They usually are not tamper-resistant due to cost constraints,
and it is easy to physically access them in most scenarios because they must be
located near the physical source of the events. Furthermore, any device can access
the information exchange because the communication channel is public. It is easy
the for an adversary to manipulate the sensor nodes and the communication
channel of an unprotected network on its own benefit.

Security protocols require the existence of some security credentials (i.e. pair-
wise keys) between peers in order to encrypt, authenticate and provide integrity
� Work done while the author was with the University of Malaga.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 120–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Killer Application for Pairings 121

to the information flow. Key distribution is not trivial in WSN because in most
cases it is not possible to know in advance which nodes are going to be neighbors,
that is, which nodes need to share a pairwise key.

It is well-known that from an efficiency point of view, symmetric key cryp-
tography outperforms public (or asymmetric) key cryptography. Indeed, public
key primitives are of the order of hundred of times more computationally in-
tensive that their symmetric key counterparts. The development of an efficient
key management system (KMS) for creating pairwise keys between neighbors
is a hot research topic, with many complex symmetric key cryptography based
frameworks [AR06]. The better performance of symmetric key primitives can be
even more acute in resource-constrained devices, for which frequently battery
life is the main limitation, so the less computationally expensive (and hence
less energy consuming) operations the better. This is the reason why in areas
like wireless sensor network security, using public key cryptography has been
considered prohibitive from the very beginning.

Somewhat surprisingly, this common wisdom is being challenged. The main
reason behind this is the fact that communicating data in these devices requires
considerable power, in contrast to wired devices. Therefore, it can be the case
that the energy saving of a computationally inexpensive primitive is nullified by
the bigger amount of data it requires to be sent. This has already been shown
by Großschädl, Szekely and Tillich in [GST07], where the energy cost of two
standardized symmetric and asymmetric key exchange protocols has been evalu-
ated. Specifically, the symmetric key protocol used in that study is a light-weight
variant of authenticated Kerberos [KN93], while the asymmetric key protocol is
an elliptic curve version of Menezes-Qu-Vanstone [MQV95, DE06] (ECMQV).
The striking result is that in standard medium-size wireless sensor networks,
ECMQV consumes less power than Kerberos, due to the fact that it requires
50% less bits to be exchanged.

We go one step further by considering an extreme case of wireless commu-
nication, namely, communication between underwater sensor nodes. Classical
electromagnetic waves communication is not satisfactory in underwater environ-
ments due to the conducting nature of the medium, especially in the case of
sea water. Instead, acoustic communication is the most widely used technique,
due to the low signal reduction of sound in water [LZC08]. Acoustic commu-
nication presents severe limitations in bandwidth and requires a huge amount
of energy. According to Morgansen [Hic08], current state of the art in practical
scenarios is transmission of 640 bits (80 bytes) per second. We argue than in
this extremely constrained environment, non-interactive identity-based key es-
tablishment (NIKE) protocols such as SOK [SOK01, DE06] provides the most
efficient solution to the problem of key distribution in large UWSN. This can
seem quite surprising, since at the time of this writing efficient identity-based
key cryptography is tied to a computational number-theoretic primitive called
bilinear pairing (cf. Chapter 5 in [BSS05]), which is a computationally intensive
operation. In a wired system, identity-based key agreement would in general only
be used for its specific functionalities, but not from a computational efficiency



122 D. Galindo, R. Roman, and J. Lopez

point of view. At first sight, one would preclude its use in WSN for a similar
reason. However, the use of NIKE in UWSN achieves the lowest bandwidth while
providing the best properties for key distribution from a global point of view.

The structure of this paper is as follows: In Section 2 we revise the concept of
wireless sensor networks and the need of key management systems with certain
properties. Later, in the same section, we introduce the special features of un-
derwater sensor networks (UWSN). In Section 3, we will revise the behaviour of
non-interactive identity-based key agreement protocols, and analyze their suit-
ability to UWSN in comparison with other “traditional” asymmetric protocols.
In Section 4, we evaluate whether symmetric key-based KMS are more useful in
underwater environments than identity-based protocols. Finally, in Section 5 we
conclude the paper.

2 Wireless Sensor Networks

Wireless sensor networks are a very useful tool for solving problems in scenarios
that require the acquisition and processing of physical measurements. The prin-
cipal elements of a sensor network are the sensor nodes and the base station.
Sensor nodes (nodes) are wireless-enabled, battery-powered, highly constrained
devices that collect the physical information from their environment using an
array of sensors such as thermistors, photodiodes, and so on. The base station
is a more powerful device that serves as an interface between the nodes and the
user. It collects the information coming from sensor nodes, and also send control
information issued by the user. There can be from dozens to thousands of sensor
nodes on a deployment field, although there is usually only one or more base
stations on the same field.

Security is one of the principal concerns while designing protocols and mech-
anisms for WSN. In fact, sensor networks are inherently insecure due to the
features of their nodes and the communication channel. As a result, it is easy for
an adversary to manipulate the sensor nodes and the communication channel of
an unprotected network on its own benefit. There must be some protocols and se-
curity mechanisms that guarantee the resiliency of the network against any kind
of external or internal threat. The foundation of these mechanisms and proto-
cols are the security primitives, such as Symmetric Key Cryptography (SKC),
Public Key Cryptography (PKC) and Hash functions. Using these primitives,
it is possible to assure the confidentiality and integrity of the communication
channel, while authenticating the peers involved in the information exchange.

Due to its energy efficiency and fast speed, Symmetric Cryptography be-
comes an interesting choice for securing the foundations of a sensor network.
It can provide confidentiality to the information flow, and is also able to pro-
vide integrity. There are many optimal SKC algorithms implemented on sensor
networks (such as Skipjack), that have small requirements in terms of memory
usage and encryption speed (2600 bytes and 25µs/byte for Skipjack, respec-
tively [CS06]). Moreover, some sensor nodes have transceivers that implement



A Killer Application for Pairings 123

the IEEE 802.15.4 standard, which include a hardware implementation of the
AES-128 algorithm.

However, as aforementioned, it is necessary to have certain security credentials
in order to open a secure channel between two peers. As a result, if a sensor
network relies only on SKC, it is necessary to implement certain key management
systems (KMS) that distribute the pairwise keys over the nodes of the network
before or after its deployment. The underlying problem here is the typical key
management shortcomings of symmetric-key algorithms. To have a glance at
these shortcomings, let us introduce some metrics to evaluate key distribution
solutions, in particular, those proposed in [CY05, AR06]:

– Scalability: Ability to support large networks.
– Efficiency: Storage, processing and communication limitations on sensor

nodes must be considered:
• Storage: Amount of memory required to store security credentials.
• Processing: Amount of processor cycles required to establish a key.
• Communication: Number of messages exchanged during a key gener-

ation process.
• Key connectivity: Probability that two (or more) sensor nodes store

the same key or keying material.
– Resilience: Resistance against node capture.
– Extensibility: Key distribution mechanisms must be also flexible against

substantial increase in the size of the network after deployment.

Typical shortcomings of SKC-based key distribution solutions are associated to
either scalability, key connectivity, resilience and extensibility properties, being
the main advantage of these solutions a low processing time. Public Key Cryp-
tography (PKC) is useful in this context. By using authenticated key exchange
protocols, the process of negotiating pairwise keys between previously unknown
peers can be greatly simplified, as it enjoys benefits in every single property in
the above-mentioned metrics, except for processing time. However, as we shall
see, in UWSN the processing time gets its relevance lowered, as bandwidth is by
far the most relevant parameter. Thanks to this, a specialized PKC-based key es-
tablishment mechanism, namely, non-interactive identity-based key agreement,
outperforms previous SKC-based key distribution solutions.

2.1 Underwater Wireless Sensor Networks

The cost of using the communication channel largely impacts the energy required
to run any interactive protocol between sensor nodes. Most previous analysis
were done considering a sensor node that uses the air as a transmission medium.
This is the most common situation for a WSN, and most prototypes have been
deployed on such conditions. However, there are many potential applications
where sensor nodes must be deployed in a lake or in the sea, either for long-term
aquatic monitoring (Marine biology, deep-sea archaeology, seismic predictions,
pollution detection, oil/gas field monitoring) or short-term aquatic exploration
(Underwater natural resource discovery, anti-submarine mission, loss treasure



124 D. Galindo, R. Roman, and J. Lopez

Table 1. Analysis of the energy consumption of acoustic modems

MICA2 MICAz UWM2000 UWM4000
Working range 150 m 100 m 1500 m 4000 m
Throughput 19.2 kbit/s 250 kbit/s 9600 bit/s 4800 bit/s

Tx. consumption 81mW 52.2mW 4000 mW 7000 mW
Rx. consumption 30mW 59.1mW 800 mW 800 mW
µJ per bit (Tx) 4.12 µJ 0.204 µJ 416.66 µJ 1458.33 µJ
µJ per bit (Rx) 16.8 µJ 16.8 µJ 83.33 µJ 166.66 µJ

discovery) [Cui07]. These networks have received the generic name of Underwater
Sensor Networks (UWSN) [APM05].

In these UWSN, it is unpractical to use radio frequency transceivers, because
of the severe attenuation factor presented by water. In order to open a com-
munication channel between sensors, it is necessary to use specific underwater
acoustic modems. These modems have different features than RF transceivers:
they are highly unreliable, their bandwidth is much more limited, and sending
or receiving one bit of information carries a high energy penalty.

The differences between radio transceivers and acoustic modems in terms of
the energy consumed by transmitting and receiving one single bit of data are
highlighted in Table 1. It can be seen that the difference in consumption (J per
bit) between acoustic modems and RF transceivers is not negligible. For the radio
transceivers, we have considered the most popular sensor nodes platforms as of
today, which are the MICA2 and the MICAz [Inc08]. The MICA2 transceivers
use the 868/916 MHz ISM bands, while the MICAz transceivers use the IEEE
802.15.4 standard. For the acoustic modems, we have considered the UWM2000
and UWM4000 modems [Inc07], which are commonly used in research literature.

These results have been obtained using the information contained in the mo-
dem and mote datasheets, under the following assumptions: i) For the UWM2000
modem, we have used the mean of the transmission power indicated in its
datasheet (2-8W). ii) For the transceivers used in the MICA2 and MICAz motes,
we have considered the most expensive transmission mode, which is theoretically
able to send a bit of data to the maximum working range.

3 Non-interactive Identity-Based Key Agreement

If one uses traditional PKC-based authenticated key agreement to build key dis-
tribution solutions, then one is forced to use certificates, since they are needed
to establish a trusted link between a public key and the identity of its owner
(in our case a sensor node) in order to prevent man-in-the-middle attacks. In
a WSN, nodes are supposed to establish pairwise keys with nodes that belong
to the same network, and forbidden to do so with nodes or devices outside
the network. Therefore, in key establishment protocols like ECMQV, the nodes
must at the beginning exchange their public keys and certificates. It is natural
to assume these certificates take the form of a signature by the base station



A Killer Application for Pairings 125

on the identity and public key of the node. In general, nodes public and se-
cret keys are set up by the base station. Such a setting can be viewed as a
key-escrowed system, that is, there exists a trusted party who computes the se-
cret keys of the users. As a consequence, one is tempted to use different forms
of key-escrowed public key paradigms like identity-based cryptography, even if
they do not provide certain properties such as forward secrecy.

The concept of identity-based cryptography was proposed by Shamir in [Sha85],
aimed at simplifying certificate management inherent to the deployment of pub-
lic key cryptography. The idea is that an arbitrary string id uniquely identifying
a user (such as an e-mail address or a telephone number) can serve as a public
key for a cryptographic scheme. The user cannot compute the corresponding
secret key anymore, but instead it must authenticate itself to a Key Generation
Center from which it obtains the corresponding private key sk[id] via a secret
channel.

The interest of IBC for WSN is that when using IBC systems only the identity
of the sensors must be exchanged, and thus neither public keys nor certificates
need not be sent. This results in an energy saving for the point of view of the
communication between sensors, which can be very considerable depending on
the sensor’s transmitter. Additionally, in WSN it is often the case that a single
party (base station) sets up the network, and this base station can naturally
play the role of the Key Generation Center in an IBC system. The base station
embeds the secret key sk[id] prior its use in the field, and no authentic nor secret
channel is needed for key setup.

In this section we recall a non-interactive authenticated identity-based key
establishment scheme. Due to the lack of any standardized identity-based key
exchange protocol, we describe a non-interactive scheme due to Sakai, Ohgishi
and Kasahara [SOK01, DE06], which is the first identity-based authenticated key
agreement protocol proposed in the literature. Also, for comparison purposes, the
elliptic curve version of the Menezes-Qu-Vanstone authenticated key exchange
protocol [MQV95, LMQ+03], which is one of the most standardized key exchange
protocol using public key cryptography, is described in Algorithm 3.2. Note that
we provide an abridged version of both schemes which suffices for our purposes.
Moreover, we consider that the involved nodes must exchange their credentials
due to extensibility issues (preexisting nodes may not have the public credentials
of new nodes) and memory issues (nodes may not be able to store the credentials
of all the nodes of the network).

3.1 SOK - Sakai, Ohgishi and Kasahara

We start by defining the concept of bilinear map. Let G = 〈g〉 be a cyclic group
of order q for prime q > 3. A map e : G × G → G1 to a group G1 is called a
bilinear map, if it satisfies the following two properties:

Bilinearity: e(ga,gb) = e(g,g)ab for all integers a, b
Distorted: e(g,g) �= 1 in G1.

See [BF03, Ver04] for ways of constructing bilinear maps.



126 D. Galindo, R. Roman, and J. Lopez

In the SOK protocol, a hash function H : {0, 1}∗ → G is included in the
domain parameters of the system, together with gz, where the master secret key
z is only known to the base station. Node A’s secret key is skA = H(idA)z , while
node B’s secret key is defined as skB = H(idB)z . Notice that A’s identity is idA

and B’s identity is idB.

Algorithm 3.1 SOK non-interactive ID-based key derivation for entity A
Input: Bilinear map domain parameters G,G1, e,gz, n, the identity idB and the

secret key skA

Output: A secret key KAB shared with entity with identity idB

1: KAB ← KDF
(
e(H(idB), skA)

)

Entity B runs the same algorithm by simply swapping the values (idB, skA)
in Algorithm 3.1 with (idA, skB) and finally obtains the same key KAB thanks
to the bilinearity of the pairing,

e(H(idB), skA) = e(H(idB), H(idA)z) = e(H(idB), H(idA))z =
= e(H(idA)z , H(idB)) = e(skB, H(idA))

3.2 ECMQV - Elliptic Curve Menezes-Qu-Vanstone

In the following we define the notation and behaviour of ECMQV. KDF is a
key derivation function, which can be implemented with SHA-160 for example.
Node A’s public key is pkA = gxA , where xA is A’s secret key. Similarly for
node B. In the first stage, the nodes exchange and verify certificates vouching
for the fact that pkA and pkB are public keys from nodes belonging to the
network. In a second stage, they exchange their ephemeral keys EA = gyA and
EB = gyB , where yA, yB are taken at random from the finite field GF(p). We
assume certificates are minimalist and take the form of ECDSA [X905] signatures
(rA, sA) and (rB , sB) by the owner/manufacturer of the network on the messages
idA||pkA and idB||pkB respectively, where || denotes concatenation.

Entity B runs the same algorithm by simply swapping the values (xA, yA, pkB,
EA, EB) in Algorithm 3.2 with (xB , yB, pkA, EA, EB) and finally obtains the
same key KAB (cf. [LMQ+03]).

3.3 Bandwidth and Energy Consumption

As we can see, the SOK protocol only requires the identities idA, idB of the
sensors involved to compute a pairwise authenticated and confidential key. On
the other hand, the communication overhead of the ECMQV protocol is domi-
nated on by the exchange of public keys, certificates and ephemeral keys. On the
computational side, SOK has to perform one hash operation, which is roughly



A Killer Application for Pairings 127

Algorithm 3.2 ECMQV key derivation for entity A
Input: Elliptic curve domain parameters G, g, n, the secret keys xA, yA and the

public elements pkA, pkB, EA, EB

Output: A secret key KAB shared with entity with public key pkB

1: m← �log2(n)�/2 {m is the half bitlength of n}
2: uA ← (ux mod 2m) + 2m {ux is the x-coordinate of EA}
3: sA ← (yA + uAxA) mod n
4: vA ← (vx mod 2m) + 2m {vx is the x-coordinate of EB}
5: zA ← sAvA mod n
6: KAB ← KDF (EsA

B · pkzA

B mod n)

equivalent to 1 exponentiation in G ‘expG’, plus 1 pairing computation. ECMQV
has to verify an ECDSA signature (one multi-exponentiation ‘mexp(2)’), and to
run its protocol (one multi-exponentiation ‘mexp(2)’, one exponentiation ‘exp’,
and two square roots ‘sqrt’ to obtain the y-coordinate from the x-coordinate).
Consequently, the overall energy cost and transmission cost of ECMQV for one
node amounts to:

2mexp(2) + 1exp + 2sqrt(+trans. 1410 bits + recep. 1410 bits) (1)

whereas the energy cost and transmission cost of SOK for one node amounts to:

1expG + 1pairing(+trans. 384 bits + recep. 384 bits) (2)

considering that i) one packet containing nodes identities, protocol ID, message
ID, checksum, and low-level headers and footers, amounts to a total of 384 bits,
ii) public keys have 161 bits (160 bits + 1 compression bit), iii) each ECDSA
certificate has 320 bits, and iv) each ephemeral key contributes with 161 bits.

The SOK protocol only needs to exchange 384 bits, whereas the ECMQV
protocol must exchange 1410 bits. Therefore, the SOK protocol requires the
lowest bandwidth to accomplish its task. In fact, due to the unreliable nature
of the acoustic channel, it is much better to use a protocol that exchanges as
few bits as possible. The main limitation of the SOK protocol is the pairing
computation, as it is very energy consuming. The most efficient implementation
we are aware of is to be found in [OSLD08], where it is reported that a pairing
for an 80-bit security level (RSA-1024 equivalent) in the ATmega128L micro-
controller [Cor07] (one of the most popular microcontrollers for sensor nodes,
featuring a 8-bit/7.3828 processor, 128 KB flash memory and 4KB SRAM mem-
ory) takes about 5.45s processing time and has around 125mJ energy cost. This
is a rather large figure, but if we compare this amount of energy to that needed
to transmit data in the UWM2000 and UWM4000 underwater sensors, we obtain
that computing a pairing takes the same amount of energy than transmitting
300 and 85 bits respectively! Thus, put into perspective, computing a pairing in
UWSN cannot be considered prohibitive at all.

This assertion is backed up by the results shown in table 2, which uses
the energy figures for elliptic curve computations and pairing computations



128 D. Galindo, R. Roman, and J. Lopez

Table 2. Energy cost of authenticated key exchange (in mJ)

MICA2 Comp. Comm. MICAz Comp. Comm.
ECMQV 107.26 7.95 115.21 ECMQV 107.26 0.61 107.87

SOK 309.39 2.16 311.55 SOK 309.39 0.166 309.55
UWM2000 Comp. Comm. UWM4000 Comp. Comm.

ECMQV 107.26 704.98 812.24 ECMQV 107.26 2291.23 2398.49
SOK 309.39 191.99 501.38 SOK 309.39 623.99 933.38

of [SOS+08] to calculate the energy consumption of a sensor node engaged in
authenticated key exchange protocols in “normal” and underwater sensor net-
works, in terms of mJ. The results are not surprising, since the cost of sending
one bit through an acoustic channel is much greater than sending one bit through
a radio frequency channel, and the transmission cost on SOK is much smaller
than the transmission cost of ECMQV.

4 NIKE and Symmetric Key-Based KMS

Although we have shown that non-interactive identity-based key agreement
(NIKE) protocols like SOK are better than traditional asymmetric key establish-
ment protocols (e.g. ECMQV) in underwater environments, it is also important
to compare them with symmetric key-based KMS. The problem of creating a
secure and efficient key management system for sensor networks based on Sym-
metric Cryptography has spanned three major frameworks: “Key-Pool” frame-
work, Mathematical framework and Negotiation framework (see Figure 1). In the
“Key-Pool” framework, every node stores a small subset of keys (known as “key
chain”) retrieved from a large set of precalculated key (known as “key pool”).
Two nodes will share a pairwise key if they have a common key inside their
“key chains”. In the Mathematical framework, two nodes calculate a common

KMS Frameworks

PKC-based

SKE-based

Mathematical-based

Combinatorics

Linear Algebra

Alg. GeometryKey Pool-based

Negotiation-based

KMS Frameworks

PKC-based

SKE-based

Mathematical-based

Combinatorics

Linear Algebra

Alg. GeometryKey Pool-based

Negotiation-based  

Fig. 1. KMS frameworks for WSN



A Killer Application for Pairings 129

pairwise key using mathematical concepts belonging to the fields of Linear Alge-
bra, Combinatorics and Algebraic Geometry. Lastly, in the Negotiation frame-
work, sensor nodes exchange information related to their pairwise keys just after
the deployment of the network.

Most KMS belonging to any of the three major frameworks must exchange cer-
tain information (e.g. the indexes of the keys included inside a “key chain”) in or-
der to derive a pairwise key. Therefore, in terms of bandwidth and energy usage,
they are not better than NIKE protocols for underwater environments. However,
inside every framework there are some KMS that are optimized to minimize the
communication overhead, even reducing the amount of information exchanged
to only the ID of a node. Some “key pool” KMS reduce the communication over-
head by linking the contents of the “key chains” to the IDs of the nodes [MHH05].
Also, in certain mathematical frameworks, the IDs of the nodes will be used as
an input for a function that will return the pairwise key: Polynomial-based key
predistribution KMS calculate f(IDi, IDj) = f(IDj, IDi) (being f a bivariate
polynomial) [LNL05], whereas Blom-based key predistribution KMS calculate
A(IDi) · G(IDj) = A(IDj) · G(IDi) (being A and G specially crafted matri-
ces)) [DDH+05]. Finally, some negotiation KMS only need to broadcast small
nonces that can be further combined into pairwise keys [LHKV04].

While all these optimized protocols could be used for underwater environ-
ments due to their low communication overhead, they have certain disadvantages
that discourage their use in this particular environment. In “key pool”-related
KMS, both their connectivity and their resilience is not good. As a result, there
exists the possibility of two nodes not sharing a pairwise key, thus it is neces-
sary to start expensive negotiations through the acoustic channel. Besides, if an
adversary captures enough nodes of the network, it will obtain information of
the pairwise keys shared by other nodes. The resilience of mathematical-based
KMS is also deficient. This is not the only disadvantage of this framework: the
scalability and the extensibility of the Blom scheme is unsatisfactory, and the
security of both mathematical foundations (Blom schemes and bivariate poly-
nomials) has not been formally demonstrated. About negotiation-based KMS,
the security of the exchange of pairwise keys can usually be assured only just
after the deployment of the network. Therefore, an adversary can eavesdrop the
negotiation process of either new nodes that want to establish communication
with old nodes or nodes that move from their original position and want to open
a secure channel with their new neighbourhood.

In comparison with all these optimized symmetric key-based KMS, non-
interactive identity-based key agreement protocols like SOK offers better scal-
ability, key connectivity, extensibility, and network resilience. The amount of
information that has to be stored inside the nodes is independent of the size
of the network, thus there are no size restrictions. Also, all nodes can exchange
their IDs at any given time, thus it is possible to open a secure connection be-
tween any pair of nodes and to add new nodes to the network. Moreover, if an
adversary captures a sensor node, it will only obtain the information related to
the node, thus he/she will be unable to eavesdrop any ongoing communication



130 D. Galindo, R. Roman, and J. Lopez

between other nodes. The primary downside of non-interactive identity-based
key agreement is its energy consumption. However, the enhanced properties of
this pairing-based key agreement (e.g. better extensibility) makes it a good can-
didate for real-life situations and scenarios. Besides, due to special requirements
such as node mobility [Hic08], the batteries of underwater sensor nodes should
have a higher capacity. As a result, the execution of few pairings during the
lifetime of the network will not have a great influence in the node.

5 Conclusions

In this work we have focused on the fact that underwater wireless sensor net-
works consume a huge amount of energy in sending and receiving data. We have
studied how identity-based cryptography can help to improve the energy cost
of cryptographic key agreement between peers in UWSN. If previous work in
the context of standard wireless sensor networks brought the novelty that the
energy penalty of transmitting data made an asymmetric key agreement pro-
tocol energy-wise more efficient than a symmetric key protocol like Kerberos,
our results bring the news that a computationally intensive primitive like non-
interactive identity-based key agreement outperforms existing key distribution
solutions in underwater wireless sensor networks. Future work includes imple-
menting and evaluating identity-based key agreement in real underwater sensor
nodes.

Acknowledgements

The authors wish to thank Prof. Gene Tsudik and Dr. Roberto Di Pietro for
their useful input during the development of this paper.

This work has been partially supported by the ARES CONSOLIDER project
(CSD2007-00004) and the CRISIS project (TIN2006-09242). The second author
was funded by the Ministry of Education and Science of Spain under the “Pro-
grama Nacional de Formacion de Profesorado Universitario”.

References

[APM05] Akyildiz, I., Pompili, D., Melodia, T.: Underwater acoustic sensor networks:
Research challenges. Ad Hoc Networks Jounal (Elsevier) 3(3), 257–279
(2005)

[AR06] Alcaraz, C., Roman, R.: Applying key infrastructures for sensor networks
in cip/ciip scenarios. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp.
166–178. Springer, Heidelberg (2006)

[BF03] Boneh, D., Franklin, M.: Identity-Based encryption from the Weil pairing.
SIAM Journal of Computing 32(3), 586–615 (2003)

[BSS05] Blake, I.F., Seroussi, G., Smart, N.: Advances in Elliptic Curve Cryptogra-
phy. London Mathematical Society Lecture Note Series, vol. 317. Cambridge
University Press, Cambridge (2005)



A Killer Application for Pairings 131

[Cor07] Atmel Corporation. Atmega128 product description (2007),
http://www.atmel.com/dyn/products/product card.asp?part id=2018

[CS06] Jun Choi, K., Song, J.-I.: Investigation of feasible cryptographic algorithms
for wireless sensor network. In: Proceedings of the 8th International Con-
ference on Advanced Communication Technology, ICACT 2006 (2006)

[Cui07] Cui, J.-H.: Underwatersensor network lab — overview, achievements, plans
(2007), http://uwsn.engr.uconn.edu

[CY05] Camtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor
networks: a survey. Technical Report TR-05-07, College of William & Mary
(March 2005)

[DDH+05] Du, W., Deng, J., Han, Y.S., Varshney, P., Katz, J., Khalili, A.: A pairwise
key pre-distribution scheme for wireless sensor networks. ACM Transactions
on Information and System Security 8(2), 228–258 (2005)

[DE06] Dupont, R., Enge, A.: Provably secure non-interactive key distribution
based on pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)

[GST07] Großschädl, J., Szekely, A., Tillich, S.: The energy cost of cryptographic
key establishment in wireless sensor networks. In: ASIACCS, pp. 380–382.
ACM, New York (2007)

[Hic08] Hickey, H.: Underwater communication: Robofish are the ultimate in ocean
robots, keeping in touch without scientists’ help (June 2008)

[Inc07] LinkQuest Inc. Underwater acoustic modems (2007),
http://www.link-quest.com/

[Inc08] Crossbow Technology Inc. Wireless sensor nodes (2008),
http://www.xbow.com/

[KN93] Kohl, J.T., Neuman, B.C.: The Kerberos network authentication service
(V5) (1993)

[LHKV04] Charles Lai, B., Hwang, D.D., Pete Kim, S., Verbauwhede, I.: Reducing
radio energy consumption of key management protocols for wireless sensor
networks. In: Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED 2004), pp. 351–356 (2004)

[LMQ+03] Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.A.: An efficient
protocol for authenticated key agreement. Des. Codes Cryptography 28(2),
119–134 (2003)

[LNL05] Liu, D., Ning, P., Li, R.: Establishing pairwise keys in distributed sensor
networks. ACM Transactions on Information and System Security 8(1),
41–77 (2005)

[LZC08] Liu, L., Zhou, S., Cui, J.-H.: Prospects and problems of wireless commu-
nications for underwater sensor networks. Wireless Communications and
Mobile Computing - Special Issue on Underwater Sensor Networks (to ap-
pear, 2008)

[MHH05] Mehta, M., Huang, D., Harn, L.: Rink-rkp: A scheme for key predistribution
and shared-key discovery in sensor networks. In: Proceedings of the 24th
IEEE International Performance Computing and Communications Confer-
ence (IPCCC 2005), pp. 193–197 (2005)

[MQV95] Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols
providing mutual implicit authentication. In: SecondWorkshop on Selected
Areas in Cryptography (SAC 1995) (1995)

[OSLD08] Oliveira, L.B., Scott, M., Lopez, J., Dahab, R.: Tinypbc: Pairings for au-
thenticated identity-based non-interactive key distribution in sensor net-
works. In: 5th International Conference on Networked Sensing Systems (to
appear, 2008), http://eprint.iacr.org/2007/482

http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
http://uwsn.engr.uconn.edu
http://www.link-quest.com/
http://www.xbow.com/
http://eprint.iacr.org/2007/482


132 D. Galindo, R. Roman, and J. Lopez

[Sha85] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985)

[SOK01] Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over
elliptic curve (in japanese). In: The 2001 Symposium on Cryptography and
Information Security, Oiso, Japan (2001)

[SOS+08] Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: Nanoecc:
Testing the limits of elliptic curve cryptography in sensor networks. In:
Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer,
Heidelberg (2008)

[Ver04] Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic
curve cryptosystems. J. Cryptology 17(4), 277–296 (2004)

[X905] Accredited Standards Committee X9. American national standard x9.62-
2005, public key cryptography for the financial services industry, the elliptic
curve digital signature algorithm (ecdsa) (2005)



Anonymous and Transparent Gateway-Based
Password-Authenticated Key Exchange

Michel Abdalla, Malika Izabachène, and David Pointcheval

Ecole Normale Supérieure, CNRS, INRIA, France

Abstract. In Asiacrypt 2005, Abdalla et al. put forward the notion of
gateway-based password-authenticated key exchange (GPAKE) protocol,
which allows clients and gateways to establish a common session key with
the help of an authentication server. In addition to the semantic security
of the session key, their solution also provided additional security proper-
ties such as password protection with respect to malicious gateways and
key privacy with respect to curious authentication servers. In this paper,
we further pursue this line of research and present a new and stronger
security model for GPAKE schemes, combining all above-mentioned se-
curity properties. In addition to allowing a security proof for all these
security properties, the new security model has also other advantages
over the previous one such as taking into account user corruptions. After
describing the new security model, we then present a new variant of the
GPAKE scheme of Abdalla et al. with similar efficiency. Like the origi-
nal scheme, the new scheme is also transparent in that it does not differ
significantly from a classical 2-PAKE scheme from the point of view of a
client. Finally, we also show how to add client anonymity with respect
to the server to the basic GPAKE scheme by using private information
retrieval protocols.

1 Introduction

1.1 Motivation

To address practical scenarios in which the service provider is actually com-
posed of two distinct entities, one being the direct interlocutor of the client and
the other being a back-end server capable of checking the identity of the client,
Abdalla et al. [1] put forward the notion of gateway-based authenticated key
exchange. A gateway-based authenticated key exchange [1] is a three-party pro-
tocol, which provides a client C and a gateway G with a common session key
with the help of an authentication server S, which authorizes or not the access for
the client. Among the various means of authentication that can be considered,
the most interesting one from a practical point of view is the password-based
setting in which a simple human-memorizable secret, called a password, is used
for authentication.

Due to the low entropy of passwords, gateway-based password-authenticated
key exchange protocols may be subject to exhaustive search attacks, also known

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 133–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



134 M. Abdalla, M. Izabachène, and D. Pointcheval

as dictionary attacks [7, 18, 21, 5, 10], in which the adversary tries to break the
security of the scheme by trying all possible values for the password. In these
attacks, which can be either online or off-line depending on whether the attacker
needs to interact with the system in order to test whether a password guess is
correct, the success probability of an attacker can be significantly high. Since
online dictionary attacks cannot be avoided, the main goal of gateway-based
authenticated key exchange protocols based on passwords is to show that off-
line dictionary attacks are not possible. As in other password-based protocols,
this is done by showing that, after k active attempts, the success probability of
an adversary of impersonating one of parties or distinguishing a session key from
a random key is at most O(k/N), where N is the size of the dictionary and the
hidden constant is preferably 1, and not much more than that as could be the
case with partition attacks [9].

1.2 Related Work

Unfortunately, security against off-line dictionary attacks may not be sufficient
since some of the parties involved in the protocol may be malicious. In partic-
ular, it may be possible for a malicious gateway to gain information about the
values of user passwords and for the malicious authentication servers to learn the
value of the session keys. To overcome this problem, Abdalla, Chevassut, Fouque,
and Pointcheval [1] proposed a new setting for gateway-based systems, termed
gateway-based password-authenticated key exchange (GPAKE), which protects
both the session keys and the passwords. In their work, in addition to the usual
notion of semantic security outlined above, two other security goals were consid-
ered: key privacy with respect to servers and password protection with respect to
gateways. The former says that the session key should remain indistinguishable
from random, even with respect to a honest-but-curious server that knows the
passwords of all the users. The latter states that the gateway should not learn
any information about the passwords of clients, from the authentication server.

1.3 Contributions

In this paper, we further investigate the line of research initiated by Abdalla
et al. [1] on GPAKE schemes. In a first step, we provide in Section 2.2 a new
and stronger security model which captures all of the above security notions in
a single security game. The new model has several advantages over the previous
one. First, the new model does not require a separate proof for each security
property. Second, the new model also allows for corruptions of participants, thus
dealing with the issue of forward secrecy. Third, in relation to the key privacy
with respect to the server, the new security model also extends the class of
sessions for which the session keys are private to the adversary, in particular
allowing some sessions to remain fresh even after the corruption of a player.

After describing the new security model, we then present in Section 3 a new
scheme based on the GPAKE scheme of Abdalla et al. [1]. Like the original
scheme, our new GPAKE scheme does not require too much additional compu-
tational load for the client when compared to a classical 2-PAKE scheme. This



Anonymous and Transparent GPAKE 135

is the so-called transparency property: from the client point of view, the scheme
should not differ significantly from a classical 2-PAKE scheme between 2 parties.
Though the security guarantees provided by the new scheme are stronger, the
latter is only slightly less efficient than the original scheme proposed in [1]. The
complexity assumptions used in the proof of security of the new scheme are also
similar to those used by the original scheme in [1]. In both cases, the proof of
security is in the random oracle model.

An additional feature considered in [1] was password privacy with respect to
servers, in which users’ passwords are kept secret even from servers. To achieve
this goal, the responsibility for authenticating users was distributed among sev-
eral servers using standard techniques in threshold-based cryptography. Such a
technique can be applied to our new protocol too. In Section 4, we address a dif-
ferent and perhaps more crucial privacy concern: the possibility that servers can
log connections and profile users. We would thus like to preserve the anonymity
of the clients and ensure that the connections are unlinkable, in the same vein
as [11]. Towards this goal, we show in Section 4 how to add client anonymity
to the scheme in Section 3 by using Private Information Retrieval protocols
(PIR) [15, 16]. The use of PIR is not new, but it shows a new feature of our
GPAKE protocol: it can be efficiently interfaced with a PIR. Furthermore, this
new feature can be used in conjunction to the previous password privacy with
respect to the servers.

Finally, it is important to note that, since we designed our protocol with
client anonymity in mind, it is not possible for a server to distinguish an honest
authentication request by a client from an online impersonation attack by a
malicious gateway. That is, the server cannot detect online dictionary attacks.
As a result, clients’ passwords should be renewed more often in the present
scheme than in the case of standard 2-PAKE schemes. In cases where this is
not possible, one should use instead a protocol without client anonymity and in
which the server can detect online dictionary attacks.

2 Security Model

2.1 Notation

In the three-party-protocol, each participant will be denoted as U ∈ U , which
can be either a client, a gateway or the (authentication) server. In the password-
based scenario, each client C holds a password pwC ∈ D, of small entropy and the
server manages a database DB, with all the clients’ passwords. Here, we suppose
that there is only one (authentication) server.

We denote by C and G the sets of the clients and the gateways respectively
and by S the server. We thus have U = C ∪ G ∪ {S}. Since any party can be
involved concurrently in several executions, several instances of a party can be
activated: we denote by I the set of instances and by Us

i the s-th instance of
a participant Ui. When there is no ambiguity, we omit to precise the instance
of the participant, for the sake of clarity in the writing. When Cs

i and Gt
j are

engaged in a conversation to compute a common session key, in case of success,



136 M. Abdalla, M. Izabachène, and D. Pointcheval

we denote the session key sks,t
i,j = skCs

i
= skGt

j
, and we say that Cs

i and Gt
j are

partners in this session (see Definition 2).

Definition 1 (Gateway-based Authenticated Key-Exchange). A gateway-
based key-exchange protocol is specified by four polynomial-time algorithms P =
(LL, CLIENT, GATEWAY, SERVER):

– LL specifies the initial distribution of the long-lived keys. It takes as input a
security parameter k;

– CLIENT specifies how a client C behaves; It takes as input an instance Cs, a
state sC , the identity of the sender, and a message m. It outputs the message
the client C should send as answer;

– GATEWAY specifies how a gateway G behaves; It takes as input an instance
Gs, a state sG, the identity of the sender, and a message m. It outputs the
message the gateway G should send as answer;

– SERVER specifies how S behaves; It takes as input an instance Ss, a state
sS, the identity of the sender, and a message m. It outputs the message the
server S should send as answer.

In the definition above, the specific format of the input message m will depend
on the specific protocol being analyzed. LL(k) is a probabilistic polynomial-
time algorithm, which returns the long-lived keys for all the participants. In our
particular case of password-based authentication for the client, and symmetric
private and authenticated channels between the gateways and the server, they
consist in:

– a password pw for each client (given to the server too);
– a symmetric key SecureChan−S−G for each gateway-server pair to provide a

secure channel (with privacy, integrity and origin of the messages).

2.2 Security Model

In this section, we describe how an adversary will be allowed to interfere in the
protocol. Our model extends the previous work on three-party and gateway-
based key-exchange protocols [1,2] by considering together the notions of:

– key privacy (semantic security of the session key) with respect to the server,
and even under corrupted players (which includes forward-secrecy);

– client’s password protection with respect to the gateway;
– client privacy (anonymity) with respect to the server.

The former extends the classical notion, and namely it includes the server in the
adversary list. This also justifies the quite new latter notion of anonymity with
respect to the server, that we do not trust, but just for authenticating a valid
client, and authorizing the connection. As in [2], we do not trust the gateway,
and thus the password must not be known to it.

We would like to emphasize that the stronger notion of semantic security
that we study is of independent interest. It indeed extends usual security models



Anonymous and Transparent GPAKE 137

for 2-party password-based key exchange protocols [5,10]: we consider a broader
notion of freshness, which is crucial to define which sessions have to be protected
or not. Usually, as soon as a user is corrupted, all the new sessions are not fresh.
However, if the real users play the protocol, the session key may still be secure in
practice, we will introduce that in our security model (this is definitely stronger
than what can be achieved in the universal composability framework [12, 13] as
we see later).

Oracle Queries. As in [2], we adopt the Real-or-Random (RoR) security model,
which means that the adversary interacts with the protocol via oracle queries
(in any order it wants —concurrent executions—, and should not be able to
distinguish truly random keys from the real keys. As it has been proved in [2],
this model is stronger than the Find-then-Guess (FtG) security model, where
the adversary only has to distinguish a random key from a real one, but in one
session only. The oracle queries are the following ones:

– Execute(Cr
i , G

s
j , S

t): This query models passive attacks in which the ad-
versary asks for an honest execution of the entire protocol. The adversary
gets the whole transcript resulting from the communication between Cr

i , Gs
j

and St.
– Send(U r

i , U ;m): This query models an active attack, where the adversary
chooses the message m it sends to the instance U r

i , where Ui ∈ C ∪ G ∪ {S}
in the name of U . The adversary gets back the message Ui should produce
upon receiving such a message m. If the message is invalid or if U r

i is not in
a waiting state, the query is ignored.

Because of the private and authenticated channels between the gateways
and the server, if the gateway G is not corrupted (the flag corruptG is false),
the recipient does not accept a message that has not really been sent by the
legitimate sender.

– Reveal(Us
j ): if the session key for instance Us

j has ever been defined, then the
answer is the actual session key skUs

j
, otherwise, the answer is ⊥.

Intuitively, the Execute-query models passive observations of transcripts and
Send-queries model active attacks against some honest players. They can be
combined in an attack game. Then, sessions obtained via Execute-queries are
called “passive sessions”, whereas sessions obtained via Send-queries are called
“active sessions”. Of course, Execute-queries can be simulated by a sequence
of Send-queries, but such a sequence of Send-queries is counted as an “active
session”. In the password-based setting, our goal is to prove that the on-line
dictionary attack is the best one: passive sessions do not leak any information
about the password, an active session can help the adversary to test only one
password.

The Reveal-query models a misuse of the established session key, and thus the
leakage of information: session keys should not reveal any information about the
password.

Semantic Security. One goal of our protocol is to ensure that the session keys
established between C and G remain completely unknown to S and to any other



138 M. Abdalla, M. Izabachène, and D. Pointcheval

party: session key privacy, also known as semantic security. Indeed, we want
that the adversary could not get any relevant information on the fresh session
keys (not obviously revealed, see the freshness notion below) from the above
queries. To model the capability of the adversary to guess some information on
the session key, we define an additional Test-query. for a random bit b as follows:

– Test(Us
j ): If no session key is defined for instance Us

j or if instance Us
j is not

fresh (see notion of freshness below), then this query is answered by ⊥. If this
query has already been asked, then it outputs the same answer. Otherwise
if b = 1, it outputs the real session key (from Reveal(Us

j )), and if b = 0, it
outputs a random one of same size. Finally, the flag testUs

j
becomes true.

Note that the answer of the oracle is independent of the number of queries the
adversary asks. Indeed, the oracle always answers the same way: all the session
keys obtained via Test-queries are either all real or all random, according to the
bit b. Furthermore, as soon as the flag testUs

j
is set to true, no Reveal(Us

j ) can
be asked.

Corruption. We say that a participant U is corrupted and we set corruptU to
true if one of the Corrupt-queries has been asked (it is initially set to false). Note
that we consider weak corruptions only, where the long term secrets are revealed,
but not the internal states.

– Corrupt(Ci): This query models corruption of the client in which the adver-
sary learns the password of client Ci. We then set corruptCi

← true.
– Corrupt(Gj): This query models corruption of a gateway in which the adver-

sary gets access (read/write) to the secure channel between the gateway Gj

and the server. We then set corruptGj
← true.

– Corrupt(S): This query models corruption of the server S in which the ad-
versary learns all the passwords stored into the server, i.e, pwC for all the
clients C, and gets access to the secure channels between the server and
all the gateways (since we assumed a symmetric protection tool). We then
set corruptC ← true and corruptG ← true for all the clients C and all the
gateways G.

Partnering. We use the notion of partnering based on session identifiers (sid), as
defined in [5]. In particular, the value of sid is taken to be the partial transcript
of the communication between the client and the gateway before the session key
has been accepted.

Definition 2. Two instances Cs
i and Gt

j are said to be partners if and only if
the following four conditions hold:

1. Both Cs
i and Gt

j have accepted;
2. Both Cs

i and Gt
j share the same sid;

3. The partner for Cs
i is Gt

j and vice-versa;
4. No instance other than Cs

i accepts with partner Gt
j and vice-versa.



Anonymous and Transparent GPAKE 139

Freshness. The goal of the adversary in the Real-or-Random game is to guess
the bit b used during Test-queries. However, this is clear that in some cases,
the adversary trivially knows the actual session key. And, then, the Test-query
answer would immediately lead to the bit b value, whereas the adversary did
not really break the semantic security. For example, if the adversary asks a
Reveal-query and a Test-query to the same session.

We thus need to restrict the use of the Test-queries: they must be asked to
fresh sessions/instances only.

Informally, we say that an instance is not fresh, and freshUs is thus set to
false, when the adversary could trivially distinguish a random session key from
a real one, or when no key exists yet:

– if U has not accepted. Note that it will make no sense to consider this case
since no session key has been defined: an instance that has not accepted is
not fresh. Hence the initialization of the fresh-tags to false.

– if U has been asked a Reveal-query, any Test-query to U or its partner clearly
reveal b. Such a Reveal-query thus flips the freshness status of the instance
and its partner to false.

These two restrictions are classical, and in order to capture the forward-secrecy,
a corruption that happens after the end of the protocol does not affect the
freshness status. We consider this stronger forward-secrecy notion in this paper,
contrarily to [1].

Moreover, in previous freshness definitions, as soon as a party was corrupted,
the sessions initiated afterward were automatically not fresh (this is also the case
in the UC security model, since a corrupted player is under the control of the
adversary, and cannot play on its own). Here are some reasons for considering
some sessions initiated after a corruption as not fresh:

– if C is corrupted, the adversary could trivially break the semantic security by
playing the role of the gateway and the server, against the client: he chooses
all gateway and server randomness to compute the common session key;

– if C is corrupted, then the adversary knows the client’s password then he
could play the role of the client, against the gateway;

– if G is corrupted, the adversary can play the role of the gateway, with both
the server and the client.

However, even if everybody is corrupted but the adversary is passive during this
session (an Execute-query or simple forwarding via Send-queries), there is no
reason to mark this session as unfresh. In practice, even if the long term key of
a player has been stolen, the latter can be sure for some session that it is talking
with an honest player: it is useful to know that in such a case, the session key
will be secret, hence the freshness of such a session.

Definition 3. When a player U accepts (either Cs
i or Gt

j), if both this party and
its partner are not corrupted; or, if all the messages received by this party were
generated by an honest user (only oracle-generated-messages —see below— or a
passive session —through an Execute-query); then freshU ← true, else freshU ←



140 M. Abdalla, M. Izabachène, and D. Pointcheval

false. Later, a Reveal-query can flip the status from true to false, as explained
earlier.

Oracle-Generated Messages. When an instance Us is asked a Send-query for a
message m, so that m has been answered by a Send-query, then we say that this
is an oracle-generated-message.

We write OG(Us) when Us receives an oracle-generated-message. More gener-
ally, we write OG(Us, n), when the n-th flow (in the protocol) received by Us, is
an oracle-generated-message.

Definition 4. We say that m is an oracle-generated-message if there exists an
instance Us

j , for s ∈ I and a participant Ui ∈ U such that m = Send(Us
j , Ui;m′)

for some message m′.

Due to the fact that we assume a secure channel, and thus authenticated, between
the gateways and the server, all non-oracle-generated messages between the server
and a non-corrupted gateway will be rejected with overwhelming probability,
if we choose an appropriate symmetric encryption mechanism. Indeed, if the
gateway is not corrupted no message can be correctly encrypted to and from it,
when communicating with the server.

Secure Protocol. We consider an adversary A, against a protocol P , which has
access to Execute, Send, Reveal-queries, as defined above, as well as to Test-
queries to fresh instances only. Let Succ be the event in which the adversary
guesses correctly the bit b determining the behavior of the Test-query (whether
it outputs the real session key or a random one). We define the AKE-advantage
of the adversary A in breaking the semantic security of the protocol P by :
Advake

P (A) = 2 · Pr[Succ] − 1.

Definition 5. We say that a password-authenticated key-exchange protocol P is
secure if for every polynomial time adversary A that interacts actively with at
most q instances,

Advake
P (A) <

c · q
N

+ negl(),

where N is the size of the dictionary where the passwords are uniformly drawn,
and c is a small constant (ideally 1, but a larger constant may appear because of
the proof details).

Note that the security notions of semantic security, key privacy with respect
to the server, forward-secrecy, and password protection, as defined by [1] are
implied by the above security definition. For the three first notions, this is clear
since they are modeled by the Test-query. About the password-protection, if a
corrupted gateway could learn some information about the password, then this
information could be used by the adversary to perform a faster on-line dictionary
attack.



Anonymous and Transparent GPAKE 141

3 Our New GPAKE Protocol

3.1 Description of Our Scheme

In this section, we describe our new GPAKE protocol, which is a slight variant
of [1]. Let (G, g, q) be the description of a cyclic group G of order q generated by
g. Let � be the security parameter. We need several hash functions G, H1, and
H2:

G : U2 ×D �→ G, H1 : U2 × G3 �→ {0, 1}�, H2 : U2 × G3 �→ {0, 1}�.

They will be modeled by random oracles in the security analysis. From each
password pw ∈ D′, we define PW

def= G(C,G, pw) ∈ D ⊂ G, assumed to be the
authentication means between the client C and the gateway G, with which the
client wants to establish a secure channel (transparency means that the client
does not need to know whether the gateway can compute everything by itself
or needs some help from outside). The client knows pw, and the gateway will
ask some help from the server who knows the PW’s, since the storage limitation
is not as strong for him. Such a random generation of the actual common secret
PW (hence the use of a random oracle G) is crucial for the PCDDH-assumption
below. The new protocol still consists of four messages exchange between the
client, the gateway and the server as in [1]. To achieve the stronger notion of
freshness, which may include certain sessions with corrupted players, we need
two additional zero-knowledge proofs of knowledge of the discrete logarithms of
h and Y with respect to bases g and h (see Section 3.2). The complete description
can be found in Figure 1, where NIZKPDL signatures of knowledge are described
in the next section. Another difference with respect to the protocol of [1] is
that, upon the reception of X� and the client identity string C, the gateway
just forwards these two elements to the server. Then, the gateway chooses the
exponent y and computes Y and K at the same time. This allows us to introduce
anonymity as we see later in Section 4.

3.2 Zero-Knowledge Proof of Knowledge of Discrete Logarithm

In our protocol, we need non-interactive zero-knowledge proofs of knowledge of
discrete logarithms. This will actually be a signature of knowledge: we denote
by NIZKPDL(m; g, h) the signature of knowledge of the discrete logarithm of h in
basis g on the message m. This is the Schnorr’s signature [24,25], proved secure
in the random-oracle model [22, 23]. Granted the forking-lemma, when such a
valid proof is generated by the adversary, extraction is possible, operating one
rewind.

More precisely, let us describe the zero-knowledge proofs Π1 and Π2 used in
our scheme, on the message X�. Let G be a cyclic group of order q generated
by g. We use a non-interactive version of the Schnorr’s proof system presented
in [24,25] to which we apply the Fiat-Shamir transformation [17] in the random-
oracle model [6,22,23]:

– Public data: h = gs, description of (G, g, q)



142 M. Abdalla, M. Izabachène, and D. Pointcheval

Client C Gateway G

G,H1,H2 G,H1,H2

PW
def= G(C,G, pw) ∈ D ⊂ G

pw ∈ D′

accept ← false accept ← false

x
R← Zq, X ← gx

X� ← X × PW

⎛⎝ Flow 1
C, X�

⎞⎠
−−−−−−−→

⎛⎝ Flow 2
C, G, X�

⎞⎠
−−−−−−−→

y
R← Zq, Y ← hy

⎛⎝ Flow 3

X, h, Π1

⎞⎠
←−−−−−−−

Π2 ← NIZKPDL(X�; h, Y )
K ← X

y

K ← Y
x

⎛⎜⎜⎜⎜⎜⎜⎝
Flow 4

G, h, Y ,
AuthG,
Π1, Π2

⎞⎟⎟⎟⎟⎟⎟⎠
←−−−−−−− AuthG ← H2(C, G, X�, Y , K)

AuthG′ ← H2(C, G, X�, Y , K)
Π1, Π2 valid? ∧ AuthG′ ?= AuthG

If no error/reject
sk ← H1(C, G, X�, Y , K);
accept ← true

sk ← H1(C, G, X�, Y , K);
accept ← true

The communication channel between the client and the gateway is not authenticated
nor private

Gateway G Server S

G,H1,H2

⎛⎝ Flow 2
C, G, X�

⎞⎠
−−−−−−−→ s

R← Zq, h ← gs

X ← (X�/PW)s PW is related to C and G⎛⎝ Flow 3

X, h, Π1

⎞⎠
←−−−−−−− Π1 ← NIZKPDL(X�; g, h)

The communication channel between the gateway and the server is secure (privacy,
integrity and origin of the messages)

Fig. 1. Our new GPAKE



Anonymous and Transparent GPAKE 143

– Witness: the exponent s
– Proof of knowledge of the witness: the prover chooses a random exponent
α ∈ Zq and sets u = gα. He computes c = H(X�, g, h, u) and v = α − cs
mod q. He then sends the proof (c, v) to the verifier.

– Verification of the proof: c ?= H(X�, g, h, gvhc).

The forking lemma [22,23] shows that, in an execution in which a valid proof is
generated, in polynomial time, it is possible to extract the witness, from one of
the rewinds with a different random choice for the random oracle, but with any
non-negligible (as small as required) probability.

Note however that during a rewind we have to make sure that no other ex-
traction is needed, which would imply another rewind, and so. An exponential
complexity could happen if several extractions are needed. But in our analysis,
only one extraction is needed.

3.3 Computational Assumptions

For the security of our scheme, we need the following computational assumptions,
which are either quite classical, or at least already used in the past [4]. The last
one could be shown to hold in the generic-group model [26].

Computational-Diffie-Hellman Assumption. Let (G, g, q) be a represented group.
The CDH-assumption states that given two elements A = ga and B = gb, where
a and b are drawn at random from Zq, it is hard to compute C = Ab = Ba = gab.
More precisely, given the experiment,

Expcdh (A)
a, b

R← Zq, A← ga, B ← gb, C ← gab

C′ ← A(A,B)
if C = C′, output 1, else output 0

the advantage of A in breaking the CDH-problem, defined by Advcdh (A) =
Pr[Expcdh (A) = 1], in reasonable time, is negligible.

Decisional-Diffie-Hellman Assumption. The DDH-assumption states that the
two distributions (g,A = ga, B = gb, C = gab) and (g,A = ga, B = gb, C′ = gc),
where a, b, c are drawn at random from Zq are computationally indistinguishable.
As previously done, we can define an experiment:

Expddh
d (A)

a, b, c
R← Zq, A← ga, B ← gb

if d = 0, set C ← gc, else set C ← gab

output d′ ← A(A,B,C)

The advantage ofA in deciding the DDH-problem in reasonable time is negligible,
where:

Advddh (A) =
∣∣∣Pr[Expddh

1 (A) = 1]− Pr[Expddh
0 (A) = 1]

∣∣∣ = negl().



144 M. Abdalla, M. Izabachène, and D. Pointcheval

Password-Based Chosen-Basis Diffie-Hellman Assumption. The following prob-
lem is a variant from [4]. Let (G, g, q) be a represented group. The following ex-
periment, Exppcddh

b (A,D) defines how we simulate the interaction between the
Password-based Chosen-basis Decisional Diffie-Hellman challenger, or PCDDH-
challenger, and the adversary A, where D is a dictionary of N random and
independent elements in G. In a find-stage, the adversary chooses a basis X . It
then receives back PW, X ′ and Y , defined as follows:

PW
R← D, s0, s1

R← Zq, X ′ ← (X/PW)sb , Y ← gs0 .

Then, the adversary has to guess the bit b:

Exppcddh
b (A,D)

(X, s) ← A(find,D)
PW

R← D, s0, s1 R← Zq

X ′ ← (X/PW)sb , Y ← gs0

output b′ ← A(guess, s,X ′, Y, PW)

The PCDDH-assumption states that the advantage of A in deciding the PCDDH-
problem, with respect to the dictionary D, in reasonable time, is essentially 1/N :

Advpcddh
D (A) = Pr[Exppcddh

1 (A,D) = 1]
−Pr[Exppcddh

0 (A,D) = 1] ≤ 1
N + negl().

We insist on the fact that for the problem to be hard, the elements in the
dictionary D must be independently drawn from G. Namely, the relative discrete
logarithms, of any quotient of any pair, in basis g must be hard to compute. Note
that the computational variant, where the goal is to compute X ′ = (X/PW)s0 ,
given Y and PW, for a chosen X , with probability greater than 1/N , holds under
the CDH-assumption. Since the passwords are independent and random elements
in G, the adversary has to guess the password. Even without formal proof, such
a decisional assumption seems reasonable under the DDH-one.

3.4 Security Result

Granted the PCDDH-assumption, one can prove the security of this protocol, in
a strong sense, since the freshness notion is much more general than usual: it of
course covers the forward-secrecy, by keeping a session as fresh even after a cor-
ruption of the parties. But even after corruptions, sessions where the adversary
only forwards messages are also considered fresh. The security proof of our new
GPAKE scheme can be found in the full version [3].

Theorem 1 (Security). Let us consider protocol from Figure 1 over a group of
prime order q, where D is a dictionary of size N . Let us consider an adversary A
that is able to initiate concurrent executions of the protocol, and to corrupt any
party (in a non-adaptive way, i.e. one cannot corrupt a player in the middle of
a session, but before the session starts only). If A makes less than qsend sessions



Anonymous and Transparent GPAKE 145

with the parties, under the CDH, DDH, and PCDDH assumptions, where qsend is
the number of Send-queries of A, we have,

Advake(A) ≤ 12qsend

N
+ negl().

One can note that Execute-queries have no impact in the above result. Informa-
tion leaked during such session is indeed negligible.

4 Adding Client Anonymity

In many applications, anonymity is a crucial property to be satisfied, otherwise
all the connections of the clients can be logged and then analyzed to profile the
users.

For privacy reasons, a client may want to make his connections anonymous
and unlinkable. One way is first to use different gateways. But the authentication
server is unique, and thus one cannot use a different one for each connection.
Whereas the server is the only party able to authorize, or not, the connection,
we will try to hide the client identity to it.

To this aim, we can see the server as a virtual dynamic database: for each
authorization request, the server builds the answers for all the possible clients,
but the gateway gets the one related to the actual client: the gateway and the
server can run a PIR protocol [15,16], so that the server does not learn anything
about the client. Note that using an SPIR scheme [20] additionally provides
privacy to the server, since the gateway will not learn more than the value it is
interested in.

Recall that a PIR is a communication-efficient primitive which allows a user
to retrieve a string in an n-string database without revealing anything about
the index of the data the user is querying. An SPIR is a PIR, which satisfies the
additional property of database privacy.

Several PIR have been proposed in the literature: with information-theoretic
privacy for the user and/or the database, or with computational privacy only [14].
They may use one, or several duplicated databases [19]. Recently, [8] proposed
an efficient SPIR scheme based on a new homomorphic public-key cryptosystem
which reduces considerably the complexity of existing schemes.

The nice feature of our new GPAKE is the efficient implementation with any
SPIR. Namely, any good SPIR scheme can be applied with our construction, and
thus we do not need to choose, nor to describe, a specific scheme, but just to use
the query of a “black-box” system. We will show that we can reduce considerably
the size of the “virtual” database, which would have a practical impact, whatever
actual PIR scheme we use.

With our construction, each client owns a password indexed by i, which index
is the secret of the gateway. The server manages a database of size n, the number
of clients, which contains all the passwords for each client.

A trivial way to introduce anonymity to the protocols (ours, and [1]) using
an SPIR is to dynamically generate a database, for each session, as follows: upon



146 M. Abdalla, M. Izabachène, and D. Pointcheval

reception of a Send-query, with input X�, the server computes the answers for
each message (Ci, G,X

�), and thus for all the possible clients Ci, since it does
not know which one is interacting with the gateway G: the dynamic database
consists of all the blocks Bi = (gsi , (X�/PWi)si , Πi). Then, the gateway runs the
SPIR protocol to get the correct Bi, while preserving the anonymity of the client.
This transformation is quite generic, and one can note that the computational
cost for the server for building the database is quite huge, essentially because of
the multiple proofs Πi.

We can easily improve efficiency in our case, by computing once (even pre-
computing), and sending h = gs and Π1, and then the dynamic database only
consists of the n entries Bi = (X�/PWi)s. This considerably improves the com-
putational cost, and the storage space.

5 Conclusion

In this paper, we first strengthen the security model for password-based au-
thenticated key exchange: we applied it to the gateway-based setting, but it is
also relevant in the classical two-party scenario. We then design a new gateway-
based key exchange protocol: a practical application is the establishment of a
secure channel between a client and an application server with the help of an
authentication server. The application server does not learn anything about the
authentication material, and the authentication server does not learn anything
about the session key. We focus on the password-based authentication approach,
which is a quite practical one. Eventually, we address anonymity: the server does
not need to be aware of the actual client. It should just check whether the iden-
tity and the password match (are in the database). Our new protocol can be
efficiently interfaced with any PIR protocol to achieve client-anonymity.

Acknowledgment

We would like to thank the anonymous referees for their fruitful comments. This
work has been partially supported by the French ANR-SESUR-2007 PAMPA
Project.

References

1. Abdalla, M., Chevassut, O., Fouque, P.-A., Pointcheval, D.: A simple threshold
authenticated key exchange from short secrets. In: Roy, B.K. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 566–584. Springer, Heidelberg (2005)

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)



Anonymous and Transparent GPAKE 147

3. Abdalla, M., Izabachène, M., Pointcheval, D.: Anonymous and transparent
gateway-based password-authenticated key exchange. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) Cryptology and Network Security, 7th International
Conference, CANS 2008. LNCS. Springer, Heidelberg (2008),
http://www.di.ens.fr/∼pointche/pub.html

4. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman assumptions with applica-
tions to password-based authentication. In: Patrick, A., Yung, M. (eds.) FC 2005.
LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
New York (1993)

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy,
pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)

8. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

9. Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated
key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS,
vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

10. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

11. Bringer, J., Chabanne, H., Pointcheval, D., Tang, Q.: Extended private information
retrieval and its application in biometrics authentications. In: Bao, F., Ling, S.,
Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 175–
193. Springer, Heidelberg (2007)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, Los Alami-
tos (2001)

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

14. Chor, B., Gilboa, N.: Computationally private information retrieval (extended ab-
stract). In: STOC, pp. 304–313 (1997)

15. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS, pp. 41–50 (1995)

16. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

17. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

18. Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 1997), Cambridge, MA, USA,
June 18–20, pp. 248–255. IEEE Computer Society, Los Alamitos (1997)

http://www.di.ens.fr/~pointche/pub.html


148 M. Abdalla, M. Izabachène, and D. Pointcheval

19. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE
Computer Society Press, Los Alamitos (1997)

20. Lincoln, L.: Symmetric Private Information Retrieval via Homomorphic Proba-
bilistic Encryption. Ph.D thesis, Rochester Institute of Technology (2006),
http://www.cs.rit.edu/7Elbl6598/thesis/Lincoln full Dobument.pdf

21. Lucks, S.: Open key exchange: How to defeat dictionary attacks without encrypting
public keys. In: Workshop on Security Protocols, École Normale Supérieure (1997)

22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

23. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

24. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

25. Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

26. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

http://www.cs.rit.edu/7Elbl6598/thesis/Lincoln_full_Dobument.pdf


Cryptanalysis of EC-RAC, a RFID
Identification Protocol�

Julien Bringer1, Hervé Chabanne1, and Thomas Icart1,2

1 Sagem Sécurité
2 Université du Luxembourg
name.surname@sagem.com

Abstract. At RFID’08, Lee et al. have proposed a RFID scheme based
on elliptic curve cryptography. This scheme, called Elliptic Curve Ran-
dom Access Control (EC-RAC) has been conceived in order to be imple-
mented on an efficient security processor designed for RFID tags. The
aim of this scheme is to enable a fast, secure and private identification
scheme. Security arguments are given to prove that RFID tags imple-
menting this scheme are neither traceable nor cloneable.

We here show how tags can be tracked if one has eavesdropped the
same tag twice and we show that a tag can be impersonated if it has
been passively eavesdropped three times.

We propose a new scheme based on a modification of the Schnorr
scheme as efficient as the initial scheme. We prove that this scheme is
zero-knowledge, sound against active adversaries. Moreover, our proposal
is private under the Decisional Diffie-Hellman assumption.

Keywords: Cryptanalysis, Privacy, Zero-Knowledge, Identification,
RFID.

1 Introduction

Radio Frequency IDentification tags (RFID) are used in many contexts: ac-
cess control, inventory, livestock management. Furthermore, such devices are
expected to replace bar codes in the near future. RFID systems are constituted
of tags and readers which can communicate together wirelessly. An identifica-
tion scheme is used to identify devices. Many such schemes have been proposed
so far, either based on symmetric cryptosystems [2,6,11,15,16,22] or asymmetric
cryptosystems [14,3,8].

In a symmetric scheme, secret keys are shared between readers and tags. This
implies that a reader contains all the key material of the system. However, this
kind of scheme is in general not scalable: reader has to make as many compu-
tation as the number of RFID tags in the system. There exist some exceptions,
for instance the work of Molnar et al. [15], the work of Avoine et al. [1] and the
work of Bringer et al. [5]. Nevertheless, these schemes have a major drawback:

� This work has been partially founded by the ANR project T2TIT.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 149–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



150 J. Bringer, H. Chabanne, and T. Icart

keys are shared between tags. As a consequence, the corruption of a tag leaks
information on the other tags’ key material.

In an asymmetric scheme, each device possesses its own secret – its private key
– linked to a public value. Devices then prove their knowledge of their secrets.
Asymmetric schemes can be designed to be scalable, but at a cost of many
cryptographic computations. As a consequence, to be used on RFID tags, it is
necessary to develop very efficient schemes which respect user’s privacy.

1.1 Related Works

In [14], Lee et al. proposed an identification scheme. They also proposed a se-
curity model and proved the security (soundness and privacy) of the scheme in
the model. As we show later, the scheme is not secure while the proofs in [14]
are correct, this model has thus some weaknesses.

Among the few existing privacy models for identification devices – Juels and
Weis [12], Burmester, van Le and de Medeiros [13] and Vaudenay [21] – we choose
to work with Vaudenay’s model as it is more general. A scheme proved private
in this model is resistant against the tracking attacks, which is an important
concern for RFID tags. Many schemes have been proved not private in this
model in [17] and in [18].

In this paper, we present a new scheme, called Randomized Schnorr which is
secure against active adversaries, private in Vaudenay’s model and scalable. As
in [14], all the readers in our scheme share the same private/public key pair and
tags are aware of this public key. Readers (or Verifiers) are able to verify the
authenticity of provers thanks to their private key while eavesdroppers cannot
distinguish tags outputs.

Designated-Verifier Signature (DVS) schemes have been introduced in [10]
and put forward the idea of a signer aware of the verifier’s public key. As in [7],
our scheme can be transformed into a signature scheme. Nevertheless, this is
not the aim of the paper to determine whether the resulting signature schemes
would be a DVS scheme.

1.2 Outlines

The paper is organized as follows: Section 2 describes the EC-RAC scheme and
Section 3 its weaknesses. Section 4 deals with our security definition. Section 5
recalls the computational assumptions we use. Section 6 describes our proposal,
its security and its privacy. Section 7 describes the differences between our pro-
posal and EC-RAC in terms of performances, security and privacy. Section 8
concludes.

2 EC-RAC

Throughout this paper, E will denote an elliptic curve defined over a field Fp

with p a prime integer. We assume Ep, the group of points of the elliptic curve,
has a prime order q. Let P be a generator of this group.



Cryptanalysis of EC-RAC, a RFID Identification Protocol 151

P V
secret keys x1, x2 parameters : P, Y secret key y, x1
public keys X1, X2

β←−−−−−−−−−−−−−−− pick β ∈ [0, q − 1]
Pick α ∈ [0, q − 1]

Compute
T = αP, S = (α + x1)Y

v = αx1 + βx2
v,T,S−−−−−−−−−−−−−−−−−−→ Compute X1 = y−1S − T

Look at x1, X2 corresponding to X1
Check whether vP − x1T = βX2

Fig. 1. The EC-RAC scheme

Each prover P has two private/public key pairs, namely (x1, X1 = x1P ) and
(x2, X2 = x2P ) where x1 and x2 are random elements in Zq. The verifier V has
also a pair (y, Y = yP ) and knows all the secret keys x1 of all the tags. The
protocol is described in Figure 1. It enables the verifier to retrieve X1 and the
tag to prove its knowledge of x2.

Once the challenge β is received, a tag computes two scalar multiplications
on the curve for T and S. They also compute some small algebraic operations
to output v. In [14], RFID tags are able to compute such operations thanks to
an efficient processor design.

2.1 Security Claims of [14]

In [14], many security propositions are proved in the generic group model. We
recall here the two principal claims which ensure privacy and security against
impersonation.

Firstly: eavesdroppers can neither track nor compute the public and secret
values of a tag. To this aim, the values x1, X1, x2, X2 and y are proved to
remain private for an eavesdropper in this model. These statements are correct,
but we show that in fact it is possible to compute the value x−1

1 P from two
protocol transcripts of the same tag. Thus whenever someone can eavesdrop
other communications from this tag, he can track it.

Secondly: it is proved that even with the verifier information which are x1, X1
and X2, it is not possible to compute the tag secret value x2. It is thus claimed
that tags are uncloneable. Once more, it is not possible to compute these values,
but we prove that when someone can eavesdrop the same tag three times, he
has enough information to impersonate this tag as many times as wanted. This
implies that it is not necessary to know neither x1 nor x2 to be successfully
identified. These tags can thus be cloned without these values.

3 Attack on EC-RAC

3.1 The Tracking Attack

Assume an adversary has been able to eavesdrop a tag twice. He is in possession
of two transcripts: βi, vi, T i, Si for i ∈ {1, 2}. Note that the following equations
hold:



152 J. Bringer, H. Chabanne, and T. Icart

β1v2 − β2v1 = (β1α2 − β2α1)x1 = µx1 (1)

β1T 2 − β2T 1 = (β1α2 − β2α1)P = µP (2)

As a consequence, it is possible to get x−1
1 P = (µx1)−1µP .

Now if the adversary eavesdrops one new tag, he gets the values β3, v3, T 3, S3.
He uses one of the previously eavesdropped communication, say the first one, to
compute A = β1v3−β3v1 and B = β1T 3 −β3T 1. He then checks whether A−1B
equals x−1

1 P . In case of equality, this means that it is the same tag, otherwise it
is another one.

3.2 The Impersonating Attack

Assume an adversary has been able to eavesdrop a tag three times. He is in pos-
session of three transcripts: βi, vi, T i, Si for i ∈ {1, 2, 3}. We have the following
equalities:

β1v2 − β2v1 = (β1α2 − β2α1)x1 = A (3)

β1v3 − β3v1 = (β1α3 − β3α1)x1 = B (4)

Bβ1S2 −Bβ2S1 +Aβ1S3 −Aβ3S1 = (Bβ1 − Bβ2 +Aβ1 −Aβ3)x1Y (5)

These equations determine a linear form:

(X,Y, Z) �→ Bβ1Y −Bβ2X +Aβ1Z −Aβ3X (6)

The coefficients of this form are chosen to ensure that this form vanishes in the
vector (α1, α2, α3) and can be computed by an eavesdropper. As a consequence,
if he applies this form to the vector (S1, S2, S3), he computes (Bβ1−Bβ2+Aβ1−
Aβ3)x1Y . The value Bβ1−Bβ2 +Aβ1−Aβ3 vanishes if the vector (1, 1, 1) is in
the kernel of the form. This event has a probability 1

p to happen. For this reason,
Bβ1 −Bβ2 +Aβ1 −Aβ3 is not equal to zero with an overwhelming probability
and he can compute x1Y . This is another privacy leakage in the previous part,
but computing this value also enables to impersonate tags.

To impersonate a tag eavesdropped three times, given a random value β, the
adversary:

– computes λ = β(β1)−1,
– computes T ′

1 = λT 1 = (λα1)P ,
– computes T ′

2 = λ(S1 − x1Y ) + x1Y = (λα1 + x1)Y ,
– computes v′ = λv1 = λα1x1 + βx2,
– and sends v′, T ′

1, T
′
2.

These three values are the ones a legitimate tag would have computed for β and
the random value α = λα1. As a remark, if the verifier has communicated with
a tag, as he knows the secret value x1 of the tag, he can directly impersonate
the tag because he can compute x1Y .



Cryptanalysis of EC-RAC, a RFID Identification Protocol 153

These two attacks clearly contradict the security announcements of [14]. We do
not manage to find a way to repair this scheme without using a hash function. In
fact, if a tag proves his knowledge of a secret only by answering to one challenge,
the answer needs to be a signature of the challenge. Furthermore, to respect
privacy, this signature has to be a DVS privately verifiable. To the best of our
knowledge, we are not aware of very efficient DVS schemes in term of space,
computations and without hash computation. As a consequence, we prefer to
use a three passes scheme such as a zero-knowledge scheme for these RFID tags.

4 Security Definitions

Following [21], we consider that provers are equipped with tags to identify
themselves. Tags are transponders identified by a unique Serial Number (SN).
Nevertheless, during the identification phase, a random virtual serial number
(vSN) is used to address them, for instance as defined in the ISO/IEC 14443-3
standard [9].

4.1 Identification Protocol

An identification protocol is a succession of messages sent by a tag and a reader to
each other. These messages form the protocol transcript. There exists a function
VerifyKVs which determines whether a tag is identified by the verifier given a
protocol transcript. KVs is the secret key of the verifier.

We define the Setup algorithms of the model. They are built to ensure that
even if verifier’s secrets are revealed, the tags’ secrets remain secret.

4.2 Setup Algorithms

– SetupAuthority(1k) �→ (KAs,KAp) outputs a private/public key pair of
an authority.

– SetupVerifierKAp() generates a private/public key pair (KVs, KVp), pos-
sibly none. This pair can be used to protect communication between tags
and verifiers.

– SetupTagSecretKAp(SN) returns the parameters of the tag identified by
SN. This algorithm outputs a couple (s, I) where s is the private key of the
tag, I = sP is its public key and identity.

– SetupTagStateKVp (SN, s, I) returns S: some data to initialize the internal
memory of the tag.

– SetupTagKVp(SN) first uses SetupTagSecret then SetupTagState,
and stores the pair (I,SN) in a database.

4.3 Correctness

A scheme is correct if the identification of a tag created with the SetupTagKVp

algorithm succeeds except with a negligible probability.



154 J. Bringer, H. Chabanne, and T. Icart

4.4 Security against Impersonation

We give an informal definition of security against impersonation under active
attacks. This definition has been formalized in [4]. We first describe a security
game and then give the security definition.

Security Game: Assume there exist a system of tags which can be interrogated
via the identification protocol. In a first phase, an adversary is allowed to com-
municate with all tags. In a second phase, the adversary can communicate with
the verifier in order to impersonate one of the tags of the system.

Definition 1. The scheme is secure against active impersonation attacks
if adversaries cannot succeed at this game except with a negligible probability.

For instance, EC-RAC is not secure in this model.

4.5 Privacy

To define privacy in Vaudenay’s model, it is necessary to describe the capability
of adversary.

Firstly, if an adversary does not have access to the result of the function
VerifyKVs , he is called Narrow. To prevent a tracking attack against a passive
eavesdropper, it is sufficient to prove in the model that there exists no narrow
adversary against the privacy of the scheme.

Secondly, differences exist between adversaries who are able to dump the
RFID tags’ internal state from adversaries who are not. An adversary who is
able to corrupt a tag, to extract its secret and to reuse it, is a Strong adversary.
If an adversary cannot corrupt a tag, he is a Weak adversary.

Finally, an adversary can be for instance narrow and weak. He then is called
narrow-weak. For this reason, we here consider 4 kinds of adversaries1: weak,
narrow-weak, strong, narrow-strong.

To prove privacy, as for the security, we need a game. In this game is defined an
algorithm called a Blinder. Its name comes from the fact that it is an algorithm
between tags and adversary which hides the formers from the latter. While the
adversary tries to communicate to the tags, they are in fact communicating to
the Blinder. Nevertheless the Blinder never knows which tag it is simulating,
this is ensured by the model construction. For this reason, the Blinder cannot
associate public values to some given tags. This is a consequence of the fact that
the Blinder cannot interact with genuine tags.

Privacy Game: Assume there exist a system of tags which can be interrogated
via the identification protocol. In one phase, adversaries can communicate with
legitimate tags via the protocol. In another phase, adversaries can communicate
with simulated tags through a Blinder.

Definition 2. A scheme is private if there exists a Blinder such that no adver-
sary has an advantage between the two phases except with a negligible probability.
1 In the original model, there are 8 kinds of adversary but we choose to simplify it for

the sake of clarity of this paper.



Cryptanalysis of EC-RAC, a RFID Identification Protocol 155

This condition is a sufficient condition to prove the privacy of a scheme in Vaude-
nay’s model. The complete Vaudenay’s model is much more general: adversaries
can use 7 oracles, they are 8 kinds of adversary, the blinder simulates 4 of the 7
oracles. Due to lack of space, we only recall in this paper a sufficient condition
to prove privacy in the model.

As proved in [21], a private scheme in this model respects anonymity and
untraceability. A scheme respects anonymity if no adversary is able to retrieve
public information on the tag. A scheme is untraceable if an adversary cannot
link tags thanks to their outputs. In this model, EC-RAC is not narrow-weak
private, which is the lowest privacy level.

4.6 Zero-Knowledgeness

A Zero-Knowledge (ZK) scheme enables to prove the knowledge of a secret
without revealing any information on this secret. Honest-Verifier ZK schemes
do not reveal information on the secret to an honest verifier. An equivalent
definition of Honest-Verifier ZK is that there exists a simulator which is able to
perfectly simulate a prover only with the knowledge of public values and the
knowledge of the next challenge of the verifier. A simulation is perfect when
the distribution of simulated outputs is the same as the distribution of genuine
outputs.

5 Computational Assumptions

The Discrete Logarithm (DL) problem can be defined as:

– Given P and aP in Ep with a randomly chosen in [0, q − 1],
– compute a.

The Computational Diffie-Hellman (CDH) problem can be defined as:

– Given P, aP and bP with a and b randomly chosen in [0, q − 1],
– compute abP .

Let us define the Decisional Diffie-Hellman (DDH) problem:

– Given P , aP , bP with a and b randomly chosen in [0, q − 1],
– given cP = abP with probability 1/2 and cP = dP with probability 1/2

with d randomly chosen in [0, q − 1],
– decide whether abP equals cP .

This last problem is used to prove that our scheme is private. The security of
our scheme is ensured thanks to the One-More Discrete Logarithm (OMDL)
assumption [4] (cf. Appendix A). Indeed, our proposal is a modification of
the Schnorr scheme and it directly inherits its security properties as proved in
section 6.3.



156 J. Bringer, H. Chabanne, and T. Icart

6 Our Proposal

The Schnorr scheme, described in [20] is an efficient ZK identification scheme.
Its security is based on the hardness of the DL problem. This scheme is honest-
verifier ZK. Nevertheless, there is an information leakage on the identity of the
prover involved in such schemes (cf. Section 6.1 later).

We here describe the different setup algorithms of the presented schemes. The
SetupAuthority(1k) algorithm outputs a private/public key pair (KAs,KAp).
KAp defines a cyclic group Ep and a generator element P . This group is a group
of points of an elliptic curve E on Fp. In this group, the DDH problem is a hard
problem. The order of the group is denoted q. The SetupVerifierKAp algo-
rithm randomly chooses v ≤ q − 1 and outputs (v, vP ). This pair of keys is not
used in the Schnorr scheme but we need it in our proposal. The SetupTagSe-

cretKAp(SN) algorithm randomly chooses s ≤ q − 1 and outputs (s, I = sP ).
The SetupTagStateKVp (SN,s,I) algorithm outputs the initial state of the tag
linked to SN: (KAp, vP, s). The SetupTagKVp(SN) algorithm uses the two last
algorithms as explained in the model. As a consequence, we assume the verifier
is aware of a list L of the form {..., (I, SN), ...}.

In the following scheme, a prover possessing a tag of state (KAp, vP, s) wants
to prove his knowledge of s while I = gs is in the list L. This list does not need
to be secret.

6.1 The Original Schnorr Scheme

In a first step, the prover randomly chooses α in [0, q − 1]. Then he computes
A = αP and sends this value to the verifier. The verifier sends a challenge c
randomly chosen in [0, q − 1]. The prover responds with y = α+ sc mod q. The
verifier checks whether there exists I ∈ L such that yP−A = cI. If this condition
is verified, the prover is identified.

For the same reason, an eavesdropper who gets αP, c, y can thus determine
the identity of the interrogated tag. This is an important privacy leakage.

6.2 Randomized Schnorr

The Randomized Schnorr scheme is described in Figure 2. The difference with
the original Schnorr scheme is that the computation of A2 = βvP ensures that
only the verifier can make the verification and computes the identity I. The
scheme stays ZK because α + β ‘hides’ the secret as in the original Schnorr
scheme. In fact, if v is given to an adversary, the scheme is equivalent to the
Schnorr scheme. As v is only used to ensure privacy, the security and the zero-
knowledgeness of the Randomized Schnorr are exactly the same as the ones of
the Schnorr scheme. Nevertheless, thanks to the verifier secret key v, the scheme
is now narrow-strong private because to identify a tag, it is necessary to be able
to solve the DDH problem in basis vP .

From the verifier point of view, to determine the tag identity, it is only nec-
essary to compute three scalar multiplications and then to make a table lookup
in his list of identity. Therefore this scheme is perfectly scalable. Furthermore,



Cryptanalysis of EC-RAC, a RFID Identification Protocol 157

P V
secret key s parameters : P, vP secret key v

public key I, I = sP
pick α

pick β
A1=αP,A2=βvP−−−−−−−−−−−−→

c←−−−−−−−−−−−−−−− pick c

y = α + β + sc mod q
y−−−−−−−−−−−−−−−→ Compute

I = (c)−1(yP − A1 − v−1A2)
and check whether I ∈ L

Fig. 2. Randomized Schnorr scheme

there is no need to keep this list secret, because even with the knowledge of tags’
secrets, adversaries cannot identify tags.

6.3 Security: Correctness and Impersonation Resistance

Correctness: this scheme is clearly correct, as a legitimate tag succeeds with
probability 1. Impersonation Resistance: the Randomized Schnorr scheme
is a modification of the Schnorr scheme. For this reason, a relevant adversary
against the former can be transformed into a relevant adversary against the
latter. In [4], it is proved that there exists no active adversary against the Schnorr
scheme under the OMDL assumtion. This implies that there exists no active
adversary against the Randomized Schnorr Scheme.

Theorem 1. Assume the Schnorr scheme is secure against active imperson-
ation attacks, then Randomized Schnorr is secure against active impersonation
attacks.

Proof: Assume there exists an active adversary ARS relevant against the Ran-
domized Schnorr scheme. Given a system of tags T and a verifier executing the
Schnorr scheme as identification protocol, we transform the tags’ normal out-
puts to simulate tags’ outputs in the Randomized Schnorr scheme. So doing, we
convert ARS into an adversary against Schnorr.

Before the first phase, we randomly choose a v and we compute vP . During
the first phase, when ARS interrogates a tag, this tag outputs A1. We intercept
this value, we randomly choose β, we compute A2 = βvP , and we send A1, A2
to ARS . After the reception of c sent by ARS , the tag outputs y, we intercept
this value to send y + β mod q to the adversary. Clearly, from ARS ’s point of
view, tags are using the Randomized Schnorr Scheme.

During the second phase, ARS tries to impersonate a tag by interacting with
the verifier. At each try, we intercept the communication. While ARS sends
A1, A2, we compute A = A1 + v−1A2 and we send this value to the verifier. We
only intercept the first message of the protocol.

As ARS is able to impersonate tags against the Randomized Schnorr scheme
then he is able to compute a coupleA1, A2 to receive a challenge c and to compute
y such that there exists an I verifying I = c−1(yP − (A1 + v−1A2)). For this
reason, we are able to compute A, to receive c and to compute y such that there
exists an I with I = c−1(yP − A). Using ARS , we are able to impersonate tag
against the Schnorr scheme. ��



158 J. Bringer, H. Chabanne, and T. Icart

6.4 Privacy

We here explain why the Randomized Schnorr scheme is narrow-strong private. A
narrow-strong adversary is theoretically aware of the secret of all tags. Neverthe-
less, even with these secrets, this adversary cannot link tags’ outputs and secrets
under the DDH assumption for the Randomized Schnorr scheme. For this reason,
in the privacy game, he cannot determine whether the system is simulated.

Theorem 2. Assume the hardness of the DDH problem, then Randomized
Schnorr is narrow-strong private.

Proof: As explained, to prove the privacy, it is necessary to prove that we can
simulate the tags outputs. In the following, we construct a simulation and we
prove that an adversary cannot distinguish between this simulation and the
outputs of genuine tags.

Transcripts of protocol instances between a legitimate device and any verifier
is of the form A1 = αP,A2 = βvP, c, α+β+sc. A simulator outputs A1, A2, c, r3.
As the adversary is strong, we assume he is aware of all the secrets. To be
relevant, an adversary A has to distinguish random instances A1, A2, c, r3 from
instances A1, A2, c, α+β+ sc. This is equivalent to consider A1, A2, r

′
3 = r3 − sc

and A1, A2, α + β. It is noticeable that r′3 is as random as r3. In the following,
we prove that distinguishing legitimate triplets and simulated triplets is harder
than solving the DDH problem.

Given an instance vP, βP, γP of the DDH problem, we randomly choose r
and we compute A1 = rP − βP . The values A1, γP, r are thus equivalent to a
simulation of the protocol transcript. If γ = βv, we have rvP = vA1 + γP thus
A1, γP, r comes from a valid transcript. Otherwise it is a random triplet because
γ is random. For this reason, if there exists an adversary able to distinguish
between simulated tags and genuine ones, he can solve the DDH problem. ��

6.5 Zero-Knowledgeness

We here show how to simulate protocol transcript of the Randomized Schnorr
Scheme. To prove the scheme is Honest Verifier Zero-Knowledge, we simulate
transcripts of a tag of identity I, for a challenge c.

Theorem 3. Randomized Schnorr is Honest-Verifier Zero-Knowledge.

Proof: Given a c, we randomly choose y mod q and we compute A = yP − cI.
We randomly choose β we compute A1 = A − βP and A2 = β(vP ). We output
A1, A2, c, y. This simulation is clearly perfect as I = c−1(yP −A1 − v−1A2).

7 Comparison of Our Proposal with EC-RAC

We here summarize the differences between EC-RAC and our Randomized
Schnorr in terms of security, privacy and computations. Table 1 gives the cost
of the presented schemes. Furthermore, it sums up their privacy and their secu-
rity. As in [14], this scheme should be implemented on elliptic curve over group



Cryptanalysis of EC-RAC, a RFID Identification Protocol 159

of characteristic around 160 bits. The fourth and fifth column represents the
number of scalar multiplication on the curve needed by a tag T and a verifier V
during one identification session.

Table 1. Comparison of EC-RAC and Randomized Schnorr

Scheme Security Privacy T : Number of V : Number of
Multiplication Multiplication

EC-RAC Unsecure Not private 2 4
Randomized Schnorr Secure against Narrow-Strong 2 3

Active Adversaries Private

8 Conclusion

After a cryptanalysis of the EC-RAC scheme, we give an efficient identification
scheme which can be implemented on special RFID tags where EC-RAC was
intended to be implemented.

Our proposal, Randomized Schnorr, is secure against impersonation under
active attacks. It respects owner’s privacy even if the tags’ secrets are revealed.
It is Zero-Knowledge, this ensures that secrets cannot be computed even by the
verifier. Randomized Schnorr is a very efficient and secure solution for RFID
system which respects privacy.

Acknowledgments

The authors thank Jean-Sébastien Coron, Bruno Kindarji and the anonymous
referees for their helpful comments.

References

1. Avoine, G., Buttyán, L., Holczer, T., Vajda, I.: Group-based private authentication.
In: Proceedings of the International Workshop on Trust, Security, and Privacy for
Ubiquitous Computing (TSPUC 2007). IEEE, Los Alamitos (2007)

2. Avoine, G., Dysli, E., Oechslin, P.: Reducing time complexity in RFID systems. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306. Springer,
Heidelberg (2006)

3. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
elliptic curve cryptography for wireless sensor networks. In: Buttyán, L., Gligor,
V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer, Heidel-
berg (2006)

4. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

5. Bringer, J., Chabanne, H., Icart, T.: Improved privacy of the tree-based hash proto-
cols using physically unclonable function. In: Ostrovsky, R., De Prisco, R., Visconti,
I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 77–91. Springer, Heidelberg (2008)



160 J. Bringer, H. Chabanne, and T. Icart

6. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

7. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

8. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature sche-
mes based on groups of unknown order. J. Cryptology 19(4), 463–487 (2006)

9. International Standards ISO/IEC. ISO 14443-3: Identification cards – Contactless
Integrated Circuit(s) Cards – Proximity Cards. Part 3: Initialization and Anticol-
lision. ISO (2001)

10. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

11. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

12. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: PERCOMW, pp. 342–
347. IEEE Computer Society, Los Alamitos (2007)

13. Van Le, T., Burmester, M., de Medeiros, B.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: ASIACCS 2007,
pp. 242–252. ACM, New York (2007)

14. Lee, Y.K., Batina, L., Verbauwhede, I.: EC-RAC (ECDLP based randomized access
control): Provably secure RFID authentication protocol. In: RFID, pp. 97–104.
IEEE, Los Alamitos (2008)

15. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: CCS, pp. 210–219. ACM, New York (2004)

16. Ohkubo, M., Suzuki, K., Kinoshita, S.: RFID privacy issues and technical chal-
lenges 48(9), 66–71 (2005)

17. Ouafi, K., Phan, R.C.-W.: Privacy of recent RFID authentication protocols. In:
Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 263–277.
Springer, Heidelberg (2008)

18. Ouafi, K., Phan, R.C.-W.: Traceable privacy of recent provably-secure RFID pro-
tocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (2008)

19. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

20. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

21. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

22. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects
of low-cost radio frequency identification systems. In: Security in Pervasive Com-
puting, pp. 201–212. Springer, Heidelberg (2003)



Cryptanalysis of EC-RAC, a RFID Identification Protocol 161

A The One More Discrete Logarithm Assumption

The computational problem n-DL is defined as a natural extension of DL. A
probabilistic algorithm A solving n-DL is given n+1 group elements g0, g1, ..., gn
in G as well as a limited access to a discrete log oracle ODL. A is allowed to
access ODL at most n times, thus obtaining the discrete logarithm of n group
elements of his choice with respect to a fixed base g. A must eventually output
the n + 1 discrete logs k0 = dlg(g0), ..., kn = dlg(gn). The One-More Discrete
Log assumption tells that no probabilistic algorithm can solve n-DL with non-
negligible success probability over G for any integer n+ 1. It is easily seen that
DL is contained as the special case DL =0-DL. This definition comes from [19].



Counting Method for Multi-party Computation over
Non-abelian Groups

Youming Qiao1 and Christophe Tartary1,2

1 Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084
People’s Republic of China

2 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

jimmyqiao86@gmail.com,
ctartary@ntu.edu.sg

Abstract. In the Crypto’07 paper [5], Desmedt et al. studied the problem of
achieving secure n-party computation over non-Abelian groups. The function to
be computed is fG(x1, . . . , xn) := x1 · . . . · xn where each participant Pi holds
an input xi from the non-commutative group G. The settings of their study are
the passive adversary model, information-theoretic security and black-box group
operations over G.

They presented three results. The first one is that honest majority is needed
to ensure security when computing fG. Second, when the number of adversary
t ≤ �n

2
 − 1, they reduced building such a secure protocol to a graph coloring

problem and they showed that there exists a deterministic secure protocol com-
puting fG using exponential communication complexity. Finally, Desmedt et al.
turned to analyze random coloring of a graph to show the existence of a prob-
abilistic protocol with polynomial complexity when t < n/µ, in which µ is a
constant less than 2.948.

We call their analysis method of random coloring the counting method as it
is based on the counting of the number of a specific type of random walks. This
method is inspiring because, as far as we know, it is the first instance in which the
theory of self-avoiding walk appears in multiparty computation.

In this paper, we first give an altered exposition of their proof. This modifica-
tion will allow us to adapt this method to a different lattice and reduce the com-
munication complexity by 1/3, which is an important saving for practical imple-
mentations of the protocols. We also show the limitation of the counting method
by presenting a lower bound for this technique. In particular, we will deduce that
this approach would not achieve the optimal collusion resistance �n

2
 − 1.

Keywords: Multiparty Computation, Passive Adversary, Non-Abelian Groups,
Graph Coloring, Neighbor-Avoiding Walk, Random Walk.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 162–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Counting Method for Multi-party Computation 163

1 Introduction

Multi-party computation allows multiple parties to cooperatively compute the value of a
common function while keeping their own personal inputs secret. Since its introduction
by Yao [17], it has become one of the major topics in cryptographic research, having
applications in distributed voting, auctions, private information retrieval for instance
[8]. The reader may be aware of a recent large-scale implementation of protocols for
auction and benchmarks by Bogetoft et al. [2]. Many cryptographic primitives are based
on mathematical structures being at least Abelian groups [13] as in [7, 10, 11, 12]. Sim-
ilarly, numerous protocols for multiparty computation are designed over such structures
[1, 3, 4]. However, the discovery of quantum algorithm to solve the factoring problem
and the discrete logarithm problem [16] prevents many existing cryptographic schemes
to be used on quantum computers. Since those machines seem to compute less effi-
ciently over non-Abelian groups, designing cryptographic protocols over such mathe-
matical structures becomes important.

The first multiparty computation protocol for non-Abelian group was designed by
Desmedt et al. in [5]. They studied the existence of secure n-party protocols to compute
the n-product function fG(x1, . . . , xn) := x1 · . . . ·xn where each participant is given
the private input xi from some non-Abelian group G. They considered the passive (or
semi-honest) adversary model [6] and information-theoretic security. They assumed
that the parties were only allowed to perform black-box operations in the finite group
G. This assumption means that then parties can only perform three operations in (G, ·):
the group operation ((x, y) �→ x·y), the group inversion (x �→ x−1) and the uniformly
random group sampling (x ∈R G).

Their results are as follows: first, if the number of adversaries t ≥ �n
2 � (dishonest

majority) then it is impossible to construct a t-private protocol to compute fG. Second,
if t < �n

2 �, they could reduce building a secure protocol to a graph coloring problem,
and designed a deterministic t-private protocol computing fG with exponential com-

munication complexity of O(n
(2 t+1

t

)2
) group elements (when t = O(n)). Third, by

using a probabilistic argument based on random coloring, they showed the existence
of t-private protocols computing fG with polynomial communication complexity of
O(n t2) group elements when t < n

µ , in which µ is a constant less than 2.948.
Since computationally bounded multi-party computation protocols for classical com-

puters are often based on information theoretically secure ones, we believe that this re-
sult would show some insight on how to design computationally bounded multi-party
computation algorithms relying on non-Abelian structures to be used over quantum
machines.

In this paper, we further explore their analysis method of random graph coloring. We
call this technique the counting method as it relies on counting the number of a specific
type of random walks. This counting method is interesting for two reasons: not only it
give us a cryptographic protocol for computing fG due to the reductions presented by
Desmedt et al., but to the best of our knowledge, it is also the first instance that applies
the theory of self-avoiding walks to cryptography.

Our results are as follows: first, we give an alternative proof of the counting method
from [5]. This modified demonstration will ensure that the protocol computing fG re-
mains secure when this method is applied to a different lattice as in Sect. 4. In this case,



164 Y. Qiao and C. Tartary

we will be able to reduce the communication complexity by 1/3, which is an important
saving for practical implementation of the protocol. However, the collusion resistance
is not as good as the original case in [5]. Second, we give a lower bound on collusion
resistance for the original case, showing that the counting method cannot give us the
optimal collusion resistance �n

2 � − 1.
In this article, we will first shortly recall the reduction proposed in [5] that relates the

problem of designing a secure protocol computing fG to a graph coloring problem. In
Sect. 3, we show the outline of the counting approach, and construct a lower bound on
the collusion resistance we can get from this method. In Sect. 4, we apply this method
to square lattices which allows us to reduce the communication cost of the protocol by a
third. Finally, we conclude our paper with remaining open questions about this method.

2 Reduction from Secure Computation to Graph Coloring

Since majority is required to ensure secure computation, we assume that t < �n
2 � in the

remaining of the paper. In such a case, Desmedt et al. reduced the problem of designing
protocol of securely computing the n-product function to the n-coloring for some spe-
cific graphs. In this section, we present these different reductions of their construction.
First, we recall the definition of secure multi-party computation in the passive, compu-
tationally unbounded attack model, restricted to deterministic symmetric functionalities
and perfect emulation as in [6].

We denote [n] as the set of integers {1, . . . , n} and {0, 1}∗ as the set of all finite
binary strings. |A| denotes the cardinality of the set A.

Definition 1 ([6]). We denote f : ({0, 1}∗)n �→ {0, 1}∗ an n-input and single-output
function. Let Π be an n-party protocol for computing f . We denote the n-party input
sequence by x = (x1, . . . , xn), the joint protocol view of parties in subset I ⊂ [n] by
VIEWΠ

I (x), and the protocol output by OUTΠ(x). For 0 < t < n, we say that Π
is a t-private protocol for computing f if there exists a probabilistic polynomial-time
algorithm S, such that, for every I ⊂ [n] with |I| ≤ t and every x ∈ ({0, 1}∗)n

, the
random variables

〈S(I, xI , f(x)), f(x)〉 and
〈
VIEWΠ

I (x), OUTΠ(x)
〉

are identically distributed, where xI denotes the projection of the n-ary sequence x on
the coordinates in I .

In the remaining of this paper, we assume that party Pi has a personal input xi ∈ G (for
i ∈ [n]) and the function to be computed is the n-product fG(x1, . . . , xn) = x1 ·. . .·xn.

In the first step of the reduction, Desmedt et al. proved that if one can construct
a symmetric (strong) t-private protocol Π ′ to compute the shared 2-product function
gG(x, y) = x · y where the inputs x and y are distributed among the n parties, then,
(n− 1) iterations ofΠ ′ would give us a t-private n-party protocol for fG. Note that the
output gG(x, y) ofΠ ′ is to be distributed amongst the n parties, too.

The second phase of reduction in [5] consists of constructing a t-private n-party
shared 2-product Π ′ from a suitable coloring over particular planar directed graphs.



Counting Method for Multi-party Computation 165

In that model, the colors stand for the n participants, each directed edge represents
one group element sent from one party to another and the non-commutativity of G is
reflected in the planar property of the graph.

Finally, Desmedt et al. showed that it was sufficient to color triangular lattices defined
as in Definition 2 using a coloring following the requirements of Definition 4.

Definition 2. The graphGtri(�′, �) is an �′ × � undirected grid such that:

– [horizontal edges] for i ∈ [�′] and for j ∈ [�− 1], there is an edge between nodes
(i, j) and (i, j + 1),

– [vertical edges] for i ∈ [�′ − 1] and for j ∈ [�], there is an edge between nodes
(i, j) and (i+ 1, j),

– [diagonal edges] for i ∈ [�′ − 1] and for j ∈ {2, . . . , �}, there is an edge between
nodes (i, j) and (i+ 1, j − 1).

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Fig. 1. The grid Gtri(6, 6)

The security requirement of the protocol is reflected in the following constraint for
the coloring ofGtri(�, �) (i.e. when �′ = �).

Definition 3. Let C : [�] × [�] �→ [n] be a n-coloring for Gtri(�, �). Denote I a subset
of [n]. Let P be a path in Gtri(�, �). We say that P is a I-avoiding path if all its nodes
are colored only with colors from [n] \ I .

Definition 4 ([5]). We say that C : [�]× [�] �→ [n] is a weakly t-reliable n-coloring for
Gtri(�, �) (or good (n, t) coloring for convenience), if for each t-color subset I ⊂ [n]:

– There exists an I-avoiding path Px in Gtri(�, �) from a node on the top row to a
node on the bottom row. Such a path is called an I-avoiding top-bottom path.

– There exists an I-avoiding path Py in Gtri(�, �) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is called an I-avoiding right-left
path.



166 Y. Qiao and C. Tartary

Remark 1. Note that in the second phase, we need a directed graph, while here we
define Gtri(�′, �) as undirected. This is allowed since Desmedt et al. showed that for
avoiding paths, the direction does not matter.

From the reductions above, Desmedt et al. have demonstrated that it was sufficient to
get a weakly t-reliable n-coloring for some Gtri(�, �) in order to construct a t-private
protocol for computing the n-product fG. The cost communication of this protocol is
n− 1 times the number of edges of Gtri(2 �− 1, �) where Gtri(2 �− 1, �) is obtained
fromGtri(�, �) by a mirror process. Thus, the communication cost of the whole protocol
computing fG is O(n �2) group elements.

3 Random Coloring and Counting Method

In this graph coloring problem, two important parameters with respect to the number of
parties n are to be taken into account. The first parameter is t, the number of adversaries
the protocol must be secure against. Since honest majority is needed to ensure security,
we know t < �n

2 �. If a protocol is secure when t < n
µ , we denote its (largest) collusion

resistance as µ. We would like µ to be as close to 2 as possible. The second parameter
is the size of the grid side �. Since the number of edges of Gtri(�, �) is a factor of the
communication cost of the protocol, we would like to minimize this parameter as much
as possible. That is, we want � to be a polynomial in n.

Designing a deterministic coloring method achieving good parameters for t and �
at the same time seems quite difficult. In [5], Desmedt et al. turned to analyze the
performance of randomly coloring the node of Gtri(�, �) and they developed what we
call the counting method. In short, they first counted the number of a specific type of
random walks. Then, by establishing the equivalence of minimal cutsets and random
walks, they plugged the number of random walks into a probabilistic argument which
resulted in the existence of good (n, t) colorings when t < n

2.948 .
Our observation is that, this analysis involves two combinatorial objects: (a specific

type of) random walks and minimal cutsets. The central object is the minimal cutset,
which has a close relation to good colorings. Then, the equivalence between minimal
cutsets and random walks is used to bound the number of such cutsets. In our exposition
of the counting method, we emphasize on the importance of minimal cutsets. We use
minimal cutsets during the whole proof and only show the equivalence between minimal
cutsets and random walks in the last step of the demonstration. Thus, we can adapt
the first part of the proof to square lattices without modification to the part involving
minimal cutsets as in Sect. 4.

Theorem 1 ([5]). For any constant R > 2.948, if t ≤ n
R , there exists a black-box

t-private protocol for fG with communication complexity O(n3) group elements.

Proof. The algorithm is simple: set Gtri(�, �) with � = O(n) (the explicit value of the
parameter � will be given later) and we choose a color for each vertex independently
and uniformly at random from the set [n]. Next, we use the counting method to analyze
the effect of this random coloring. The central combinatorial object in this method is
the minimal left-to-right (top-to-bottom) cutset of Gtri(�, �).



Counting Method for Multi-party Computation 167

Definition 5 (Cutset/Minimal Cutset). A set of nodes S in Gtri(�, �) is called a top-
bottom cutset (resp. right-left cutset) if all top-bottom paths (resp. right-left paths) in
Gtri(�, �) go through at least one node in S. A cutset S is called minimal if removing
any node from S destroys the cutset property.

It is easy to see that every cutset contains a minimal cutset. The relation between mini-
mal cutsets and good (n, t) colorings is established in the following lemma, which will
allow us to use this method to a different type of lattices in Sect. 4.

Lemma 1. Let C be an n-coloring of Gtri(�, �). If every minimal cutset contains more
than t colors then C is a good (n, t) coloring for Gtri(�, �).

Proof. We demonstrate this result by contradiction. Suppose that C is not a good (n, t)
coloring for Gtri(�, �). Then, we know that there exists a t-color subset I ⊂ [n], such
that (w.l.o.g) no I-avoiding left-right paths exist in this graph.

We denote the reduced graph of vertices colored in I as HI , and the reduced graph
of vertices colored in [n]\I as H̄ . We claim thatHI forms a right-left cutset. If it is not
the case, then there exists some right-left path in H̄ due to planarity and connectivity.
This contradicts the hypothesis that no I-avoiding paths exist in Gtri(�, �). So, there is
a minimal cutset SI ⊂ HI , and the vertices of SI are only colored with colors in I ,
forming a contradiction. ��

Given this lemma, we can analyze the effect of random coloring as follows. Suppose
that we could count the number of minimal cutsets of size k on Gtri(�, �). Then, over
the random colorings of Gtri(�, �), we could bound the probability that there exists
some minimal cutset that contains no more than t colors. If this probability could be
shown to be less than 1 when � is O(n), then we would deduce that there exists some
coloring C that is a good (n, t) coloring for Gtri(�, �) according to Lemma 1. Then,
using the reduction introduced in Sect. 2 would complete the proof of Theorem 1.

Now, two points remain to be done: first, to bound the number of minimal cut-
sets; second, to perform the probabilistic analysis. The second point is similar to what
Desmedt et al. showed in [5] except that we replace the term path employed in [5] with
cutset. We just include the probabilistic argument here for completeness.

Let NP (k, �) denote the total number of minimal right-left cutsets in Gtri(�, �) of
size k. Let px(I) (py(I)) denote the probability that there exists a minimal right-left
(top-bottom) cutset P whose node colors are all in the t-subset I representing the set
of colluders. We also denote p(I) the probability there exists some minimal cutset that
contains only colors in I .

Since node colors are chosen independently and uniformly in [n], each minimal

right-left cutset of size k has probability
(

t
n

)k
to have all its node colors in I . It is

clear that � ≤ k ≤ �2. So, summing over all possible minimal cutset sizes, we have:

px(I) ≤
�2∑

k=l

NP (k, �)
(

t
n

)k
. By symmetry, we have py(I) ≤

�2∑
k=l

NP (k, �)
(

t
n

)k
. So, an

upper bound on the probability p(I) is: p(I) ≤ 2
�2∑

k=l

NP (k, �)
(

t
n

)k
.



168 Y. Qiao and C. Tartary

Finally, taking a union bound over all
(
n
t

)
possible t-color subsets I , we get an upper

bound on the probability p that the random coloring C is not a good (n, t) coloring as

p ≤ 2
�2∑

k=�

NP (k, �)
(
t

n

)k (
n

t

)
(1)

Now, we bound the number of minimal cutsets with respect to their respective size k.
This is where the counting method is interesting. Instead of directly counting the num-
ber of minimal cutsets, we will prove that minimal cutsets, a static structure, are equiva-
lent to some type of random walks, which is a dynamic structure. Then, we will simply
bound the number of such walks, which is the subject of investigations in Physics with
a rich theory on its own respect.

On an infinite planar lattice, a random walk starts from some node and, at each step,
it randomly chooses some point from the neighbors of its current vertex as the next
step. A Self-Avoiding Walk (SAW) is a random walk such that the walker has a memory
so that he will avoid any vertex which has been visited previously [15]. It is useful in
Physics and Chemistry when people try to model the structure of polymer chain. Here,
our focus is on a generalization of SAW: Neighbor-Avoiding Walk (NAW). As its name
suggests, a NAW is a random walk that avoids the neighbors of this walk. We introduce
the following definition for the finite gridGtri(�, �).

Definition 6 (Restricted NAW). A restricted right-left (resp. top-bottom) NAW on
Gtri(�, �) is a NAW such that:

– its starting node is on the rightmost column (top row);
– its ending node is on the leftmost column (bottom row);
– and no internal nodes are on the rightmost (top) or leftmost column (bottom row).

The study of NAW is a novelty that we introduce with respect to [5]. The following is
an adaptation of Lemma 4.6 from [5]. An illustration is given on Fig. 2 when � = 6.

Lemma 2. On Gtri(�, �), a set of nodes is a right-left minimal cutset if and only if it
forms a restricted top-bottom NAW.

There is a rich literature on bounding the number of SAWs on different lattices. Lin and
Hsaio showed in [14] that the numberN of SAWs or NAWs with respect to number of
steps already taken k had the following form:

N ≈ Aµkkγ

in whichA, µ and γ are constants depending on the type of lattice (triangular, square,...)
and walk (SAWs, NAWs,...). Since µk constitutes the major fraction of N , µ plays
a central role in estimating N . This value µ is called the connective constant of the
lattice (related to the type of walk). For any walk on any lattice, we define µ as µ :=
lim

n→∞
(N(k)1/k). Compared to SAWs, the estimation of µ of NAWs receives far less

attention [9]. Desmedt et al. bounded this number on their own as follows.



Counting Method for Multi-party Computation 169

Fig. 2. A NAW on Gtri(6, 6) which is a minimal cutset

Lemma 3 ([5]). The numberMP (k, �) of NAWs of length k on infinite triangular lat-
tice is upper bounded as:

MP (k) ≤ c(µ)µk

for some constants µ, c(µ), with µ ≤ 2.948. Here, µ is just the connective constant of
NAWs on infinite triangular lattices.

Remark 2. Note that the set of NAWs on Gtri(�, �) of length k is a subset of NAWs
on infinite triangular lattices of length k, so the number of restricted right-left NAWs
is upper bounded by �MP (k) = c(µ) � µk as we have � starting points at the rightmost
column.

Remark 3. Note that we bounded the number of NAWs on infinite lattices instead of
that of restricted NAWs on Gtri(�, �). Since the set of restricted NAWs on Gtri(�, �) is
a subset of NAWs on infinite triangular lattices, finding a specific bound for Gtri(�, �)
may lead to some improvements on the value of the connective constant over such
graphs.

Given the equivalence between minimal cutsets and restricted NAWs, we get:
NP (k, �) ≤ c(µ) � µk. So, after substitutingNP (k, �) in (1) with c(µ) � µk, we have:

p ≤ 2 c(µ) �3
(
µ t

n

)�(
n

t

)
Thus, if n

t ≥ R > µ onGtri(�, �), then it is clear that this upper bound on p is less than
1 for sufficiently large �. It is sufficient to have � = O(log(

(
n
t

)
)/ log(n/(µt))) = O(n),

as claimed. This finishes the analysis of the counting approach. ��

To summarize what we have done so far, we showed the relation between good coloring
and minimal cutset, and use a probabilistic argument to show the existence of such a
good coloring. Then, we established the equivalence between minimal cutset and re-
stricted NAW on Gtri(�, �), and bounded the number of restricted NAWs to complete
the proof.



170 Y. Qiao and C. Tartary

One last thing to notice is that the collusion resistance of the protocol is just the
connective constant µ. Here, we only have an upper bound for µ in Lemma 3, so one
might guess that µ is quite close to 2, giving us a good collusion resistance. However,
we now prove that it is not the case by showing that µ ≥ 1 +

√
2 ≈ 2.414. So, simply

improving µwould not give us information about protocols whose collusion resistances
are in (2, 2.414). In other words, the counting method on Gtri(�, �) cannot be used to
prove the existence of t-private protocol for computing fG when n

2.414 < t <
n
2 .

Theorem 2. The connective constant µ of NAWs on triangular lattices is at least 1 +√
2.

Proof. We show a family of NAWs with connective constant µ′ = 2.414 by consid-
ering a random walker who moves on the infinite triangular lattice following some
constraints. Call the node where the walker is currently located the current node, and
the node before the current node the last node.

Consider such a family of random walks formed by the following rule:

1. The walker starts at the origin point. It has three choices: up (↑), right (→) and
up-right diagonal(↗);

2. The possible choices of the walker depend on its last move:

Last Move Possible Choices

↑ ↑, ↗
↗ ↑, →, ↗
→ →, ↗

We need to prove that this forms a family of NAWs. First, at every step the walker
avoids the neighbors of the last node due to its possible choices. Second, the neighbors
of the nodes before the last node lie on the left lower side of the current node, while the
walker will only go to the right upper side. So, the set of all such walks forms a family
of NAWs.

One can count the number T (k) of NAWs with respect to the number of steps k
(k ≥ 1) already taken as follows. Let fk be the number of NAWs of length k, when
the walker has three choices for the next step (e.g. the last move is ↗). Let gk be the
number of NAWs of length k, when the walker has two choices for the next move (e.g.
the last move is ↑ or →). We have the following recursive equations:{

fk+1 = fk + gk
f0 = 1

{
gk+1 = 2 fk + gk
g0 = 0

We get:

T (k) =
1
2

((
1 +

√
2
)(k+1)

+
(
1 −

√
2
)(k+1)

)
Recall the definition of connective constant, and we have µ′ = 1 +

√
2. Since this is

just a subset of NAWs, we have: µ ≥ µ′ = 1 +
√

2. ��



Counting Method for Multi-party Computation 171

4 The Counting Method on Square Lattices

Let Gsqr(�, �) be the graph after removing the diagonal edges of Gtri(�, �). So, Gsqr

(�, �) is just the square grids of side size �. In this section, we adapt the counting method
to Gsqr(�, �) and get a protocol that saves about 1/3 communication complexity com-
pared to the triangular lattices case. However, the collusion resistance of this protocol
is not as good as the original one: we show a trivial upper bound 5. Though, we do not
get a lower bound, we believe that the collusion resistance is larger than 3 in this case.

Remark 4. We would like to explain why we can color Gsqr instead of Gtri and still
get a protocol for computing fG. We reason as follows. Remember that in order for an
n-coloring C on Gtri to be (n, t) good, we require that, for every I ⊂ [n] of size t,
there exist I-avoiding top-bottom and right-left paths. If the diagonal edges in Gtri are
not used for any I-avoiding paths of I ⊂ [n], then to consider colorings on Gsqr(�, �)
is sufficient.

To apply the counting method to square lattices Gsqr(�, �), we need to examine the
proof presented in Sect. 3. It is easy to see that the proof is still valid (by replacing
Gtri with Gsqr) on square lattices up to the point where we need to bound the number
of minimal cutsets on square lattices. In the Gtri case, we bounded the number of
minimal cutsets by showing the equivalence of minimal cutsets and restricted NAWs
and bounding the number of the walks instead. It seems difficult to proceed identically
over square lattices since it could be shown that a minimal cutset on square lattices may
not need to be a walk, as shown on Fig. 3.

However, we could show that restricted NAWs on a graph Gdia(�, �) related to
Gsqr(�, �) are just minimal cutsets on Gdia(�, �). The graph Gdia(�, �) is simple: you
just connect both diagonals of every 1 × 1 grid in Gsqr(�, �) (see Figure 3). The re-
stricted NAWs on Gdia(�, �) are defined similarly as in Definition 6.

Lemma 4. A set of nodes S on Gsqr(�, �) is a minimal top-bottom (resp. right-left)
cutset if and only if it forms a restricted right-left (resp. top-bottom) NAW onGdia(�, �).

Fig. 3. Gsqr(6, 6) and its corresponding Gdia(6, 6). The node set presented in the graph is a
minimal cutset of Gsqr(6, 6). It is not a walk on Gsqr , but it is an NAW on Gdia.



172 Y. Qiao and C. Tartary

v

Fig. 4. Unique paths of v

Proof. We first demonstrate the necessary condition: since Gsqr is planar, we know
S forms a cutset. Then, we claim that it is minimal. First, observe that, on Gsqr, we
can reach every neighbor of S from the leftmost or the rightmost column. Otherwise,
there would be a cycle around the particular neighbor onGdia, which is not allowed for
NAWs. Call a neighbor v of S a left neighbor if there is a path on Gsqr between v and
the leftmost column without crossing nodes in S. A right neighbor is defined similarly.
Thus, a neighbor of S is either a right neighbor or a left neighbor. We have three cases
for u ∈ S:

1. u is not on the leftmost or rightmost column: in this case, it could be shown that u
must have right and left neighbors at the same time (by enumerating all configura-
tions of NAWs on Gdia). So, after removing u from S, we just need to connect its
left and right neighbors through u on Gsqr to get a right-left path.

2. u is on the leftmost or rightmost column except the four corners: suppose u is on
the leftmost column. Then, u must have a right neighbor due to the configurations
of NAWs on Gdia. So, removing u from S would also give us a right-left path;

3. u is at the four corners of Gsqr : since S is restricted, removing u we would imme-
diately get a right-left path (it is the top row or the bottom row).

Now, we look at the sufficient condition. First, we have a simple lemma about minimal
cutsets. An illustration is given as Fig. 4.

Lemma 5. A right-left cutset S is minimal if and only if for all v ∈ S, there is some
right-left path Pv , such that the only node from S on Pv is v. For some node v in a
minimal cutset S, such a Pv is called the unique path of v.

Proof. The necessary condition: in this case, after removing any v ∈ S, the unique path
Pv of v is just a right-left path that does not meet any node in S, destroying the cutset
property.

The sufficient condition: suppose there exists v ∈ S such that for every right-left path
P crossing v would cross some other node in S. Then, removing v would not destroy
the cutset property, contradicting the assumption about the minimality of S. ��



Counting Method for Multi-party Computation 173

Fig. 5. Different windows of nodes in a minimal cutset of Gsqr

Unique paths play an important role in this proof. By using unique paths and the pla-
narity ofGsqr(�, �), we could show the following properties of minimal cutset on Gsqr

(detailed proofs of those properties are in Appendix A).

Lemma 6. A minimal right-left cutset contains exactly one node on the top row and
one node on the bottom row.

Lemma 7. A 1 × 1 grid contains at most two nodes in a minimal cutset.

Definition 7. The window of some node v from some node set S that is not on the sides
is the 2×2 grid with v at its center. If v is on the leftmost column (or rightmost) column,
we call the 2 × 1 grid with v at the center of its left (or right) column the half window
of v. If v is on the top row (or bottom) row, we call the 1× 2 grid with v at the center of
its top row (or bottom row) the half window of v.

Lemma 8. For minimal right-left cutset, each window contains exactly 3 nodes. For
half windows, we have each left/right half window contains exactly 3 nodes, while each
top/bottom half window contains exactly 2 nodes.

We could show that these three properties, plus the minimality property fully character-
ize restricted top-bottom NAWs on Gdia.

Lemma 9. The minimal right-left cutset S on Gsqr is a restricted top-bottom NAW on
Gdia.

Proof. The cutset S can be viewed as a walk on Gdia under such guidance: the walker
starts from the unique node on the top row, and goes to the only node at its half window.
While it is not on the bottom row, it always has a unique next step to take according
to its current window specified in Lemma 8. Finally, it would reach the bottom row. At
that point, it has to stop since he has no choices any longer.

First, notice that such a walk would cross all nodes in S. Otherwise, due to planarity,
removing the vertex not on the walk would not destroy S’s cutset property. This walk
is also restricted due to Lemma 6.



174 Y. Qiao and C. Tartary

To make this random walk a restricted NAW, we need to show that the walker always
avoids the neighbors. First, due to Lemma 7, the next step of the walker avoids the
neighbors of the last node. Second, it would also avoids the neighbors of the nodes
before the last node due to Lemma 8. Thus, we proved that a minimal cutset onGsqr is
also a restricted NAW on Gdia. ��
This last lemma completes the proof of Lemma 4. ��
Having established the equivalence between minimal cutsets on Gsqr and restricted
NAWs on Gdia, we can now apply the counting method to Gsqr . Another concern is
the connective constant µdia of restricted NAWs onGdia. By considering 1-step history
of NAWs, we could get a trivial upper bound of 5.

Thus, we adapted the counting method to square lattices. Note that the number of
edges inGsqr is roughly 2/3 of the number of edges inGtri. So, we saved the commu-
nication complexity of the whole protocol by 1/3. Table 1 summarizes the comparison
of the counting method applied on Gtri and Gsqr .

Table 1. Statistics of the counting method

On Gtri(l, l) On Gsqr(l, l)
Communication Complexity c = O(n3) 2

3
c

Collusion Resistance 2.414 ≤ µ ≤ 2.948 µ ≤ 5

5 Conclusion and Open Problems

We showed that the counting method could be applied to square lattices and save com-
munication complexity of the protocol by 1/3, which is important when implementing
the multiparty protocol. We also gave a lower bound of this method for collusion resis-
tance on triangular lattices which shows the limitation of this method on Gtri(�, �).

Note the comparison of applying the counting method toGsqr andGtri. There seems
to be a tradeoff between communication complexity and collusion resistance. We think
this tradeoff is due to the structure of the lattice and the minimal cutset on this lattice.
The interplay between minimal cutset and a specific random walk is important as well.
We ask the question of generalizing this method to other types of planar lattices and
find which type of random walk corresponds to the minimal cutsets on that lattice.

We emphasize that we bounded the number of walks with respect to number of steps
taken on infinite lattices. Due to the reduction of Desmedt et al., we really need to bound
the number of random walks on finite lattices and we might hope to obtain security for
larger t = n

µ >
n

2.948 using particular graphs. So, whether there is difference between
those two cases is also an interesting problem.

Acknowledgments

The authors would like to thank Professor Xiaoming Sun for valuable discussions on
secret sharing. The authors are also grateful to the anonymous reviewers for their com-
ments to improve the quality of this paper. The two authors’ work was sponsored by the



Counting Method for Multi-party Computation 175

National Natural Science Foundation of China grant 60553001 and the National Ba-
sic Research Program of China grants 2007CB807900 and 2007CB807901. Christophe
Tartary’s research was also financed by the Ministry of Education of Singapore under
grant T206B2204.

References

[1] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: 20th Annual ACM Symposium on Theory of
Computing, Chicago, USA, May 1988, pp. 1–10. ACM Press, New York (1988)

[2] Bogetoft, P., Christensen, D.L., Damgård, I.B., Geisler, M., Jakobsen, T., Krøigaard, M.,
Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Multi-
party computation goes lives. Cryptology ePrint Archive, Report 2008/068 (January 2008),
http://eprint.iacr.org/2008/068.pdf

[3] Cramer, R., Damgård, I.B., Maurer, U.: General secure multi-party computation from any
linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 316–334. Springer, Heidelberg (2000)

[4] Damgård, I.B., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

[5] Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: On secure multi-party computation in
black-box groups. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 591–612.
Springer, Heidelberg (2007)

[6] Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge Uni-
versity Press, Cambridge (2004)

[7] Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg
(1988)

[8] Goldwasser, S.: Multi-party computations: Past and present. In: 16th annual ACM sympo-
sium on Principles of Distributed Computing, Santa Barbara, USA, August 1997, pp. 1–6.
ACM Press, New York (1997)

[9] Guttmann, A.J., Parviainen, R., Rechnitzer, A.: Self-avoiding walks and trails on the 3.12
lattice. Journal of Physics A: Mathematical and General 38, 543–554 (2004)

[10] Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)

[11] Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

[12] Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication com-
plexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482. Springer, Hei-
delberg (2006)

[13] Lang, S.: Algebra (Revised Third Edition). Springer, Heidelberg (2002)
[14] Lin, K.-Y., Hsaio, Y.C.: Self-avoiding walks and related problems. Chinese Journal of

Physics 31(6-I), 695–708 (1993)
[15] Madras, N., Slade, G.: The Self-Avoiding Walk. Probability and Its Applications.

Birkhäuser, Basel (1996)
[16] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
[17] Yao, A.C.-C.: Protocols for secure computations. In: 23rd Annual IEEE Symposium on

Foundations of Computer Science, Chicago, USA, November 1982, pp. 80–91. IEEE Press,
Los Alamitos (1982)

http://eprint.iacr.org/2008/068.pdf


176 Y. Qiao and C. Tartary

A Proofs of Three Properties of Right-Left Minimal Cutsets on
Gsqr(�, �)

Since the basic ideas of these properties are quite similar, we provide a detailed demon-
stration for Lemma 10 and we simply show the outline of the proofs for the remaining
two properties.

Lemma 10. A minimal right-left cutset contains exactly one node on the top row and
one node on the bottom row.

Proof. We demonstrate this result by contradiction. Suppose that, for some right-left
cutset S, there exist two nodes u and v at the top row and u, v ∈ S. Suppose that u lies
on the mth column and v lies on the nth column. Consider the unique paths Pu for u
and Pv for v (see Fig 6 for a rough representation of this situation). We can make the
assumption that Pu crosses u only once, and Pv crosses v only once.

Now, let the walker A move along Pu from the leftmost column, and walker B move
along Pv from the rightmost column. Due to the planarity of the grid, we know that the
paths of A and B would meet at some node w that lies on column k, m ≤ k ≤ n after
they cross u and v respectively. Now, if we connect the rest of Pu and the rest of Pv

throughw we will get a pathQ that does not cross any node in S, contradicting with its
cutset property. ��

Lemma 11. A 1 × 1 grid contains at most two nodes in a minimal cutset.

Proof. We prove this result by contradiction. Assume that, for some minimal top-
bottom cutset S, there exists a 1 × 1 grid in which there are three nodes u, v and
w ∈ S. So, we have such a configuration for unique paths Pu, Pv and Pw as shown
on Fig. 7.

In this case, if the walker follows Pw from bottom to top, then it is clear that Pw

would have no choices but to intersect with Pu or Pv after it crosses w (and after Pu

crosses u/Pv crosses v). This would destroy the cutset property of S. ��

1 m k n l
u v

w

Q

Fig. 6. The path Q does not cross any node in S



Counting Method for Multi-party Computation 177

u v

w

Fig. 7. When some 1 × 1 grid contains three points from a minimal cutset S

Lemma 12. For minimal top-bottom cutset, each window contains exactly 3 nodes. For
half windows, we have each left/right half window contains exactly 2 nodes, while each
top/bottom half window contains exactly 3 nodes.

Proof. This proof is quite similar to the demonstration of Lemma 11. We just illustrate
the configuration of unique paths when the window of v has u, w and t in it. This
is a special case, but one can enumerate all cases and find that they are all similar to
this one.

From Fig. 8, we can see the unique path of t has to intersect with Pu of Pv after it
crosses t (and after Pu crosses u/Pv crosses v), thus destroying the cutset property. ��

u

v

w

t

Fig. 8. When some 2 × 2 grid contains four points from a minimal cutset S



Keyword Field-Free Conjunctive Keyword
Searches on Encrypted Data and Extension for

Dynamic Groups

Peishun Wang1, Huaxiong Wang1,2, and Josef Pieprzyk1

1 Center for Advanced Computing – Algorithms and Cryptography, Department of
Computing, Macquarie University, NSW 2109, Australia

{pwang,hwang,josef}@ics.mq.edu.au
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore

Abstract. We consider the following problem: a user stores encrypted
documents on an untrusted server, and wishes to retrieve all documents
containing some keywords without any loss of data confidentiality. Con-
junctive keyword searches on encrypted data have been studied by nu-
merous researchers over the past few years, and all existing schemes use
keyword fields as compulsory information. This however is impractical
for many applications. In this paper, we propose a scheme of keyword
field-free conjunctive keyword searches on encrypted data, which affir-
matively answers an open problem asked by Golle et al. at ACNS 2004.
Furthermore, the proposed scheme is extended to the dynamic group
setting. Security analysis of our constructions is given in the paper.

Keywords: Keyword field, conjunctive keyword search, dynamic group.

1 Introduction

There is a trend that drives owners of their small databases to outsource their IT
needs to large professional warehouses. If the server cannot be trusted, sensitive
documents should be stored in encrypted forms. In this scenario, the following
question arises: how do the clients retrieve an appropriate collection of docu-
ments? For example, a client stores her encrypted documents on an untrusted
server, and wishes to retrieve all documents containing certain keywords with-
out any loss of data confidentiality. A simple solution would be to download
all the documents, decrypt them, and then search the decrypted documents on
her local machine. Obviously, this naive solution is inefficient. An ideal solution
would be to let the server search the encrypted documents and return only the
relevant ones provided the server is not able to obtain any information about the
1 This work was supported by the Australian Research Council under ARC Discovery

Projects DP0558773, DP0665035 and DP0663452.
2 The research of Huaxiong Wang is partially supported by the Ministry of Education

of Singapore under grant T206B2204.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 178–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Keyword Field-Free CKS on Encrypted Data and Extension 179

keywords and the contents of documents. In the literature, there is a number of
research works that address this problem. Keyword (single or conjunctive) search
over encrypted data in single-user setting were studied in [2,6,7], and schemes in
multi-user setting were proposed in [5,9,13,14,15,16].

For conjunctive key search, we can apply either the schemes based on sin-
gle keyword search with set intersection operation or meta-keyword techniques.
However, Golle et al. [7] argued that both approaches are inefficient. Subsequent
works [2,7] were trying to address the efficiency issue. Note that all existing con-
junctive keyword search (CKS) schemes were using keyword fields in the index.
This setting is useful for some systems, such as email systems. But this require-
ment is not practical for many other applications. For example, in a database
of scientific papers, each paper has its keyword list, and the keywords in each
list are arranged in the alphabetical order. So, the same keyword might occur in
different positions for different papers. In this situation, using CKS schemes with
fixed-position keyword fields is very inefficient. A user must query for a given
keyword as many times as there is the number of all possible arrangements of
keywords. In this paper, we address this issue and develop a CKS scheme where
the keywords can be in an arbitrary order and we call them keyword field-free
conjunctive keyword search (KFF-CKS) schemes.

Our Contributions. We propose a keyword field-free scheme for conjunctive key-
word search on encrypted data. Our solution is an affirmative answer to the
problem asked by Golle et al. at ACNS 2004. Security of our construction is
based on the l-decisional Diffie-Hellman inversion and discrete logarithm as-
sumptions. To the best of our knowledge, it is the first scheme dealing with
conjunctive keyword search without keyword fields in the standard model. Fur-
thermore, we extend our construction for dynamic groups and prove its security
under the Weak Diffie-Hellman assumption and LRSW assumption.

Organization. In Section 2, we review the related work. Section 3 provides no-
tation, definitions and cryptographic preliminaries. In Section 4, we construct a
KFF-CKS scheme and show the security. In Section 5 we give its extension for
the dynamic group setting, prove the security and discuss the efficiency. Finally
Section 6 gives conclusions and discusses open problems.

2 Related Work

Golle, Staddon and Waters [7] introduced the notion of conjunctive keyword
search over encrypted data and constructed two schemes. Their first scheme
compares two hash codes of the keywords to find the desired data, but the
transmission overhead of the trapdoors is prohibitive. The second scheme checks
two outputs of bilinear pairing constructed from input keywords and tests if the
keywords are included in the document. Boneh and Waters [2] proposed a public-
key CKS scheme from a generalization of anonymous identity based encryption.
Their scheme supports comparison queries (such as greater-than) and general
subset queries.



180 P. Wang, H. Wang, and J. Pieprzyk

Hwang et al. [9] designed a public key based CKS scheme for a group of
users from bilinear pairing. Wang et al. [15] introduced a notion of threshold
privacy preserving keyword search, and designed a threshold CKS scheme. Un-
fortunately, these two works are for static groups and the schemes do not support
dynamic groups.

Based on Goh’s scheme [6], Park et al. [13] proposed a CKS for dynamic
groups, which uses one-way hash chain in reverse order to make session keys,
encryption keys and index generation keys. Since all group members use identical
secret keys and the keys have to be re-generated for each session, the size of a
query grows as the number of sessions increases. Wang et al. [14] addressed the
weaknesses of Park et al.’s schemes, and proposed a scheme for dynamic groups.
They applied dynamic accumulators, Paillier cryptosystem and blind signatures.
Curtmola et al. [5] presented a searchable symmetric encryption for dynamic
groups, but their setting is different. In their scheme, the owner of the documents
gives a group of users permission to search the documents. Whenever the group
changes, the owner has to update the documents and broadcast a new key for
the authorized users. Unfortunately, their scheme cannot support a conjunctive
keyword search. Very recently Wang et al. [16] presented a new scheme of KFF-
CKS for dynamic groups, but the security is proved in the random oracle.

Observe that there is a growing number of papers that consider protocols
for private set intersection [10]. Although they address a similar problem to the
one we study in this paper, the protocols for private set intersection cannot be
applied to our scenario. The reason for that is that the server who needs to know
the decryption algorithm, would be able to break the privacy of data.

3 Preliminaries

Notation. Throughout this paper, we use the following notation. Let a R←− A
denote that an element a is chosen uniformly at random from the set A. PPT
denotes probabilistic polynomial time, The symmetric set difference of two sets
A and B is denoted by A�B = (A \ B) ∪ (B \ A). For a group G, |G| stands
for its cardinality. We assume that the number of keywords associated with a
document is fixed to l.

3.1 Definitions

Firstly we recall the known model and formal definition of CKS [2,7], and rein-
troduce the game of semantic security against chosen-keyword attacks [6,7] for
CKS.

In CKS, a client stores encrypted documents on an untrusted server that,
however, can be trusted to follow the steps of the protocol correctly. For each
encrypted document, the client first generates a secure index with a keyword
list associated with the document, and stores both the index and the encrypted
document on the server. To retrieve documents containing a particular list of
keywords, the client generates a trapdoor for the list and sends it to the server.



Keyword Field-Free CKS on Encrypted Data and Extension 181

Then the server tests each secure index against the trapdoor and returns the
matched documents to the client.

Definition 1. A CKS consists of the following four algorithms:

Setup(τ): The algorithm takes as input a security parameter τ ∈ Z+, and
outputs the system parameter PM = {PK,PR}, where PK is the public
key and PR is the private key.

BuildIndex(L,PM): The algorithm accepts as its input a keyword list L and
the system parameter PM , and outputs its secure index IL.

Trapdoor(L′, PM): The algorithm takes as its input a keyword list L′ and the
system parameter PM , and outputs the trapdoor TL′ of the list L′.

Test(TL′ , IL, PK): It expects as its input a trapdoor TL′ , a secure index IL and
the public key PK, and outputs 1 if L′ ⊆ L, or 0 otherwise.

Definition 2. A security game for CKS under adaptive chosen-keyword attacks
between an adversary A and a challenger B is as follows.

Setup: A adaptively selects a polynomial number of keyword lists from the key-
word space, and asks B for the respective secure indices. For each keyword
list L, B runs the algorithm BuildIndex(L,PM), obtains the index IL, and
then returns all the indices with respective keyword lists to A.

Query Phase 1: A may query B for the trapdoor of a keyword list L′. B runs
Trapdoor(L′, PM) to make the trapdoor TL′ for A. On receiving TL′, A
can invoke Test(TL′ , IL, PK) on every index IL to determine if all keywords
in the list L′ are contained in L or not.

Challenge: After making a polynomial number of queries, A decides on a chal-
lenge by picking two keyword lists L0 and L1 such that A must not have
asked for the trapdoor of any word in L0�L1, and sends them to B. Then B
chooses b R←− {0, 1}, and invokes BuildIndex(L,PM) to obtain the index
ILb

for Lb, then returns ILb
to A.

Query Phase 2: After the challenge of determining b is issued, A is allowed
again to query B a polynomial number of times with the restriction that A
may not ask for the trapdoor of any word in L0�L1.

Response: Finally A outputs a bit bA, and is successful if bA = b. The advan-
tage of A in winning this game is defined as AdvA = |Pr[b = bA] − 1/2|,
and the adversary is said to have an ε-advantage if AdvA > ε.

Now we define a general framework for CKS extension in a dynamic group, which
were described in [13,14], and review its security requirement as given in [14].

A scheme of CKS extension in a dynamic group includes three parties: a group
manager GM, members in the group and a server. GM setups the system, every
group member encrypts his data with the group encryption key and stores them
together with their corresponding secure indices on the server. When a group
member wishes to retrieve the data containing some keywords, she makes a trap-
door for the keywords and sends it the server. For a legitimate member’s query,
the server checks all secure indices with the trapdoor and sends all matched en-
crypted data to the member. Finally, the member interacts with GM to decrypt



182 P. Wang, H. Wang, and J. Pieprzyk

the encrypted data. Any leaving member does not longer access any data in the
server, and a joining member not only can store her data on the server, but also
is able to retrieve all encrypted data in the server. The formal definition is as
follows.

Definition 3. A scheme of CKS extension in a dynamic group G consists of the
following five components:

SystemSetup instantiates the scheme.
It has one algorithm SysSet(τ) executed by the group manager GM, which
takes as input security parameters (τ), and outputs the system public key
PKs, the group secret key SKg for all group members and the master key
MK for GM.

AuthCodGen generates the group membership certificates.
It includes the following three algorithms:
GrpAut(G, PKs,MK) is executed by GM and makes the membership cer-

tificate for every member in G. It takes as input the identities {IDi}N
i=1

of all members {Mi}N
i=1 in G, the system public key PKs and the master

key MK, and outputs membership certificates {CTi}N
i=1 for all members.

MemJon(G, {MN+i}n
i=1, PKs,MK) is executed by GM interacting with old

members when there are new members who wish to join the group. It takes
as input the certificates of all members in G, the identities {IDN+i}n

i=1 of
all newly joining members {MN+i}n

i=1, the system public key PKs and
the master key MK, and outputs membership certificates {CTN+i}n

i=1
for all new joining members, updated membership certificates for the old
members {Mi}N

i=1 and an updated parameter of the system public key
PKs.

MemLev(G, {Mji}n
i=1, PKs) is executed by GM interacting with the mem-

bers after some members have left the group. It takes as input the certifi-
cates of all members in G, the identities {IDji}n

i=1 of all leaving members
{Mji}n

i=1 and the system public key PKs, and outputs updated member-
ship certificates for the remaining members and an updated parameter of
the system public key PKs.

DataGen builds searchable encrypted data that are uploaded to the server.
It includes the following two algorithms executed by group members:
IndGen(R,PKs, SKg) makes a secure index. It takes as input a data R,

the system public key PKs and the group secret key SKg, and outputs
its secure index IR.

DatEnc(R,PKs, SKg, IR) encrypts the data. It takes as input a data R, the
system public key PKs, the group secret key SKg and its secure index
IR, and outputs the encrypted data E(R) and uploads E(R) with its IR
to the server.

DataQuery retrieves the encrypted data which contains specific keywords.
It includes the following three algorithms:
MakTrp(L′, PKs, SKg) is executed by a group member to make a trapdoor

of a list of keywords the member wants to search. It takes as input a
keyword list L′, the system public key PKs and the group secret key



Keyword Field-Free CKS on Encrypted Data and Extension 183

SKg, generates the trapdoor TL′ of L′, and outputs a query (TL′, CTi)
to the sever.

MemChk(CTi, PKs) is executed by the server to check the membership
certificate. It takes as input the membership certificate CTi and the sys-
tem public key PKs, and outputs either Yes for access granted or Access
Denied to terminate the protocol.

SrhInd(TL′ , IR, PKs) is executed by the server to scan all secure indices
against the trapdoor. It takes as input a trapdoor TL′, a secure index
IR and the system public key PKs, and outputs the encrypted data E(R)
for the member when the data includes the searched keywords or No Data
Matched for the member when the data does not contain the keywords.

DataDcrypt decrypts the encrypted data.
It includes the following three algorithms:
DatAux(E(R), CTi, PKs) is executed by a member to make an auxiliary

information associated with the encrypted data to GM. It takes as input
the encrypted data E(R), the membership certificate CTi and the system
public key PKs, and outputs an auxiliary information (U ′, CTi) for GM
and a one-time secret key ν for the member.

GDcKey(U ′, CTi, PKs, SKg,MK) is executed by GM to make a decryp-
tion key for the member. It takes as input the auxiliary information
(U ′, CTi), the system public key PKs, the group secret key SKg and
the master key MK, and outputs the decryption key D or Access Denied
for the member.

MemDct(E(R), D, PKs, SKg, ν) is executed by the member to obtain the
data. It takes as input the encrypted data E(R), the decryption key D,
the system public key PKs, the group secret key SKg and the member’s
one-time secret key ν, and outputs the desired data R.

The scheme should provide data privacy against the server and against a leaving
member of the group. This means that server has no information about the
data and keywords that are stored. Any member who has left the group should
be unable to retrieve any information about the data (except the information
he got when he was a member of the group). The scheme should also provide
security against impersonation of a legitimate user by anybody (excluding GM)
and guarantee that GM knows nothing about the data a member retrieves.

3.2 The Bilinear Pairings

For two cyclic groups G,G1 with the same large prime order q, a bilinear pairing
is defined as a function e : G×G→ G1 with the following properties:

1. Bilinear: for all P,Q ∈ G and a, b ∈ Zq, e(P a, Qb) = e(P,Q)ab.
2. Non-degenerate: there exist P,Q ∈ G such that e(P,Q) �= 1, where 1 is the

identity of G1.
3. Computable: for all P,Q ∈ G, e(P,Q) is computable in polynomial time.

A bilinear pairing parameter generator is defined as a polynomial-time algorithm
BG, which takes as input a security parameter τ and outputs a uniformly random
tuple (e,G,G1, q) of bilinear pairing parameters, where q is a τ -bit prime.



184 P. Wang, H. Wang, and J. Pieprzyk

3.3 Complexity Assumptions

In this section, we briefly review four hardness assumptions, which are the
Discrete Logarithm (DL) assumption, l-Decisional Diffie-Hellman Inversion (l-
DDHI) assumption [4], Weak Diffie-Hellman (W-DH) assumption [8], and LRSW
assumption [12,3].

Assumption 1 (DL Assumption). Given a finite cyclic group G = 〈g〉 of
prime order q with a generator g. For a given random number x ∈ G, the DL
problem is to find an integer t (0 ≤ t < q) such that x = gt. An algorithm A is
said to have an ε-advantage in solving the DL problem if

Pr[A(g, gt) = t] > ε.

The DL assumption holds in G if no PPT algorithm has at least ε-advantage in
solving the DL problem in G.

Assumption 2 (l-DDHI Assumption). Given a tuple g, ga, ga2
, · · · , gal

in a
cyclic group G of prime order q and a random element v in G, there is no PPT
algorithm that has at least ε-advantage in distinguishing between g1/a and v.

Assumption 3 (W-DH Assumption). Let G be a cyclic group of some large
prime order q. There exists no PPT algorithm such that, given P, P v, Q ∈ G
without v ∈ Zq, outputs an element Qv with at least ε-advantage.

Assumption 4 (LRSW Assumption). Let G =< g > be a cyclic group of
some large prime order q. Let X = gx and Y = gy be given for two random
values x, y ∈ Zq. Furthermore, let OX,Y (·) be an oracle such that, given m ∈ Zq,
generates a triple (a, ay, ax+mxy), where a is a random element of G. There
exists no PPT algorithm that has at least ε-advantage, given X,Y, g and OX,Y (·),
outputs (m, a, b, c) such that m /∈ Q ∧m ∈ Zq ∧m �= 0 ∧ a ∈ G ∧ b = ay ∧ c =
ax+mxy, where Q is the set of queries made to OX,Y (·).

4 KFF-CKS

We construct a KFF-CKS scheme as follows.

Setup(τ): Given a security parameter τ ∈ Z+, execute BG to generate the
bilinear pairing parameters (e,G,G1, q). Choose a random generator g of G,
α

R← Z∗
q \ {1} and a collision-free one-way hash function H : {0, 1}∗ → Zq,

and then output the public key PK = {e,G,G1, q, g,H} and the private key
PR = {α}.

BuildIndex(L,PK,PR): Given a keyword list L = {w1, . . . , wl} of a docu-
ment, the public key PK and the private key PR, construct a l-degree
polynomial

f(x) = alx
l + al−1x

l−1 + · · ·+ a1x+ a0,

such that αH(w1), · · · , αH(wl) are l roots of the equation f(x) = 0. Choose
rs

R← Z∗
q \ {1}, compute Ii = grsai for i = 0, 1, · · · , l, and send IL = {Ii}l

i=0
as the secure index of the document to the server.



Keyword Field-Free CKS on Encrypted Data and Extension 185

Trapdoor(L′, PK, PR): Given a keyword list L′ = {wp1 , . . . , wps} (s ≤ l),

the public key PK and the private key PR, firstly choose ru
R← Z∗

q \ {1}.
Then, for every keyword wpj (j = 1, · · · , s), compute Tij = gru(αH(wpj

))i

for
i = 0, 1, · · · , l. Finaly compute Ti =

∏s
j=1 Tij for i = 0, 1, · · · , l, and send the

trapdoor TL′ = {Ti}l
i=0 to the server.

Test(TL′ , IL, PK): Given a trapdoor TL′ , a secure index IL and the public key
PK, compute V =

∏l
i=0 e(Ii, Ti), and test if V = 1. Outputs 1 if so, or 0

otherwise.

Note that, the above KFF-CKS scheme does not require the values of positions
of conjunctive keywords in the secure index, which are required as compulsory
information in all existing CKS schemes. This means, the positions of keywords
in a secure index do not affect the results of searches in a KFF-CKS scheme.
Additionally, all existing CKS schemes enable an attacker to know how many
keywords in a search keyword list L′. However, in the proposed scheme, an
attacker can only know whether the search is done with a single keyword by
checking if e(T0, T2) = e(T1, T1) holds. For a search keyword list containing
more than a single keyword, she cannot know the number of keywords.

Theorem 1. The proposed KFF-CKS scheme is semantically secure against
chosen-keyword attacks under the l-DDHI and DL assumptions.

Proof. Suppose that the scheme is not semantically secure under the security
game. Then there exists a PPT adversary A that wins the security game with
an ε-advantage. We build an adversary B that uses A as a subroutine and breaks
the l-DDHI assumption with the 3

8ε-advantage.
Let (v, g, ga, ga2

, · · · , gal

) be B’s l-DDHI challenge. B’s goal is to break the l-
DDHI assumption, or in other words to decide whether v = g1/a. B interacts
with A in the security game as follows:

Setup: A adaptively selects a polynomial number of keyword lists from the
keyword space, and ask B for the respective secure indices. B replies as
follows. Let one of A’s keyword lists be Li = (wi,1, . . . , wi,l). B chooses

a value α R← Z∗
q \ {1} as the group secret key. For each word wi,j ∈ Li

(1 ≤ j ≤ l), it picks a value xi,j
R←− Zq as the hash value H(wi,j) of the

keywordwi,j . As B has g as a part of l-DDHI challenge, B can build the secure
index IL in the same way as the algorithm BuildIndex(L,PK,PR) does.
To be consistent across different queries, B keeps track of the corresponding
pair (wi,j , xi,j). Then it return all the indices with respective keyword lists
to A.

Query Phase 1: A may query B for the trapdoor of a keyword list L′ =
{w′

p1
, . . . , w′

ps
} (1 ≤ s ≤ l). For each word w′

pi
∈ L′ (1 ≤ i ≤ s), if w′

pi
previ-

ously appeared in any one of A’s queries for secure indices or trapdoors, B
takes the previous respective value xi,j as the hash value of w′

pi
, otherwise,

chooses xpi

R←− Zq as its hash value. Also, the corresponding pair (w′
pi
, xpi)



186 P. Wang, H. Wang, and J. Pieprzyk

has to be kept in memory for future use. Then, with g, B can make the trap-
door TL′ for A in the same way as the algorithm Trapdoor(l′, PK, PR)
does. Because B consistently uses the same value for the word w′

pi
, TL′ is a

valid trapdoor for L′. On receiving TL′ , A can invoke Test(TL′ , IL, PK) on
every index IL to determine if all keywords in the list L′ are contained in L
or not.

Challenge. After making a polynomial number of queries, A decides on a chal-
lenge by picking two keyword lists L0 and L1 such that A must not have asked
for the trapdoor of any word in L0�L1, and sends them to B. Then B chooses
Lb = (wb,1, . . . , wb,l), where b R←− {0, 1}. For every keyword wb,i (1 ≤ i ≤ l),
if it previously appeared in any one of A’s queries (including index queries
and trapdoor ones), B takes the previous respective value as its hash value,
otherwise, chooses xb,i

R←− Zq as its hash value. Then B creates the secure
index ILb

in the same way as the algorithm BuildIndex(L,PK,PR) does,
and returns ILb

to A.
Note that, From the polynomials’ algebraical properties, for l numbers

{xi}l
i=1, there are a polynomial number of l-degree (l+1)-coefficient polyno-

mials f(x) such that f(xi) = 0 holds for all i ∈ [l]. That means, in the algo-
rithm BuildIndex(L,PK,PR), there are polynomial choices to construct
the l-degree polynomial f(x). Additionally, A does not know the private key
α that is chosen independently of any keywords. Therefore, from the view of
A, the coefficients of f(x) are distributed uniformly. Under the DL assump-
tion holding in G and G1, A cannot compute the coefficients of f(x) or the
private key α from the secure indices and trapdoors it queried. That means,
at this stage, A has no way to distinguish the b from 0 or 1.

Query Phase 2: After the challenge of determining b for A is issued, A is al-
lowed again to query B with the restriction that A may not ask for the trap-
door of any word in L0�L1. Let one of A’s queries be L′

i = (w′
i,p1
, . . . , w′

i,ps
)

(1 ≤ s ≤ l). B chooses ru
R← Z∗

q \ {1} and rti

R← Zq (i = 1, · · · , l), computes
Ti = grurti

ai−1
for i = 1, · · · , l and T0 = vru , and then sends the trapdoor

TL′
i

= {Ti}l
i=0 to A. Since B is given g, ga, ga2

, · · · , gal

as part of l-DDHI
challenge, it is able to compute Ti = (gai−1

)rurti (i = 1, · · · , l). On receiving
TL′

i
, A can invoke Test(TL′

i
, IL, PK) on the secure index ILb

to determine
if all keywords in the list L′

i are contained in Lb or not.

Observe that, (1) when L′
i ⊆ L0∩L1, if v = g1/a and rti =

∑s
j=1(αH(w′

i,pj
))i

a
for i = 1, · · · , l, then TL′

i
is a correct trapdoor for L′

i, otherwise, not; (2) when
L′

i �⊆ L0 ∩ L1, if v = g1/a, then TL′
i

is a correct trapdoor for some other ar-
bitrary keyword list, otherwise, not.

Response. Finally A outputs a bit bA. If bA = b, B guesses that v = g1/a,
otherwise, B replies v �= g1/a.

Let E-DDHI be the event that v = g1/a in the l-DDHI challenge (v, g, ga, ga2
,

· · · , gal

), and E-random the event that rti =
∑ s

j=1(αH(w′
i,pj

))i

a (i = 1, · · · , l). Also
let SuccB and SuccA be the events the B and A win their respective challenges.



Keyword Field-Free CKS on Encrypted Data and Extension 187

We have

Pr(E − DDHI) = Pr(E − DDHI) = Pr(E − random) = Pr(E − random) =
1
2
.

When L′
i ⊆ L0 ∩ L1, TL′

i
is a correct trapdoor for L′

i if and only if

v = g1/a and rt =

∑s
j=1 αH(w′

i,pj
)

a
.

We know that

1. For a correct trapdoor,

Pr(SuccB|E − DDHI ∧ E − random) = Pr(SuccA).

2. For an incorrect trapdoor, B returns a random value in reply to the l-DDHI
challenge, that is, the answer is independent of b, so

Pr(SuccB|E − DDHI ∧ E − random) =
1
2
.

Since

Pr(E − DDHI ∧ E − random) = 1/4, P r(E − DDHI ∧ E − random) = 3/4,

we have

Pr(SuccB) = Pr(SuccB|E − DDHI ∧ E − random)Pr(E − DDHI ∧ E − random)
+Pr(SuccB|E − DDHI ∧ E − random)Pr(E − DDHI ∧ E − random)

= 1
4Pr(SuccA) + 3

8 .

When L′
i �⊆ L0 ∩L1, TL′

i
is a correct trapdoor for some other arbitrary keyword

list if and only if v = g1/a. We know that

1. For a correct trapdoor,

Pr(SuccB|E − DDHI) = Pr(SuccA).

2. For an incorrect trapdoor, B returns a random value in reply to the l-DDHI
challenge, that is, the answer is independent of b, so

Pr(SuccB|E − DDHI) =
1
2
.

So we have

Pr(SuccB) = Pr(SuccB|E − DDHI)Pr(E − DDHI)
+Pr(SuccB|E − DDHI)Pr(E − DDHI)

= 1
2Pr(SuccA) + 1

4 .



188 P. Wang, H. Wang, and J. Pieprzyk

Putting them together, we have

Pr(SuccB) =
3
8
Pr(SuccA) +

5
16
.

Finally, the advantage of B in solving the l-DDHI challenge is

Pr(SuccB) − 1
2 = 3

8Pr(SuccA) + 5
16 −

1
2

= 3
8 (Pr(succA) − 1

2 )
> 3

8ε.

Efficiency discussion. To the best of our knowledge, the proposed KFF-CKS
scheme is the first one of CKS without keyword fields. Golle et al. [7] worried
about the security of keyword fields that may give the server enough informa-
tion to infer unintended information about the documents. So, they presented
an open problem: find schemes for secure search that protects keyword fields.
Our construction gives an affirmative answer to their question. Without this
constraint, the proposed scheme is more practical for many applications in the
real world. Since there is no previous scheme to be compared with, we analyze
its efficiency as follows. For building a secure index, the client needs to construct
a l-degree polynomial and compute l hash functions, 2l + 1 multiplications and
l + 1 exponentiations; for generating a trapdoor of s keywords, the client needs
to compute s hash functions, 3sl− l+ s−1 multiplications, 2sl exponentiations;
for testing a secure index, the server needs to compute l + 1 bilinear pairings
and l multiplications. A secure index and a trapdoor have the same size, which
is l + 1 elements of the group G.

5 Extension in the Dynamic Group Setting

5.1 Construction

Now let’s extend the proposed KFF-CKS to the dynamic group setting. In the
following construction, we use Boneh and Franklin’s IBE system [1] to construct
a new algorithm for the data decryption.

SystemSetup – System Instantiation

SysSet(τ): The GM initializes the system.
Step 1. Takes a security parameter τ , runs a BG to generate (e,G,G1, q).

Chooses a random generator g of G, α, x, y R←− Z∗
q \ {1}, and computes

X = gx, Y = gy.
Step 2. Chooses two cryptographic hash functions

H : {0, 1}∗ → Zq and H ′ : G1 → {0, 1}sp,

where {0, 1}sp is the plaintext space.
Step 3. Chooses P,Q R←− G, and two values λ, σ R←− Z∗

q \{1} and computes

P ′ = Pλ, Q′ = Q(λ−σ).



Keyword Field-Free CKS on Encrypted Data and Extension 189

Step 4. Outputs the system public key PKs = (e,G,G1, q, g,X, Y,H,H
′),

the group secret key SKg = (α, P, P ′, Q,Q′), and the master key MK =
(x, y, λ, σ).

AuthCodGen – Group Authentication

GrpAut(G, PKs,MK): The group G has N members {M1, . . . ,MN}, and ev-
ery member Mi (1 ≤ i ≤ N) has an unique identity IDi.
Step 1. GM selects ai

R←− G, and computes bi = ay
i , ci = a

x+H(IDi)xy
i , then

sends Mi the secure codes {ai, bi, ci} over a secure channel.
Step 2. The member Mi keeps her membership certificate CTi = {IDi, ai,

bi, ci} secret.
MemJon(G, {Mj}j=N+1,...,N+n, PKs,MK): Let A = {ai}i=1,···,N . New users

{Mj}j=N+1,...,N+n (0 < n < q − N) with their unique identities
{IDj}j=N+1,...,N+n, respectively, wish to join the group G.
Step 1. GM chooses t R←− Z∗

q \ {1}, sends t to the old members over a
secure channel, then changes the public key X to be a new one X ′ = Xt.

Step 2. GM selects n random elements {aj}j=N+1,...,N+n from G\A, com-
putes bj = ay

j , cj = a
t(x+H(IDj)xy)
j , and outputs the secure code {aj, bj ,

cj} for Mj (j = N + 1, . . . , N + n).
Step 3. When the old members {M1, . . . ,MN} receive t, they update the

third part of their secure codes from ci to be cti (j = 1, . . . , N).
Step 4 Every member Mi (i = 1, . . . , N + n) keeps her membership certifi-

cate CTi = {IDi, ai, bi, ci} secret.
MemLev(G, {Mji}i=1,...,n, PKs): The members Mj1 , . . . ,Mjn (0 < n < |G|)

wish to leave the group G.
Step 1. GM chooses t R←− Z∗

q \{1}, sends t to the remaining members, who
are still in G after {Mji}i=1,...,n leave, over secure channels, then changes
the public key X to be a new key X ′ = Xt.

Step 2. When the remaining members {Mi′} (i.e. G \{Mji}i=1,...,n) receive
t, they update the third part of their secure codes from ci′ to cti′ .

Step 3. Every remaining memberMi′ keeps her new membership certificate
CTi′ = {IDi′ , ai′ , bi′ , ci′} secret.

DataGen – Data Building

IndGen(R,PKs, SKg): For a keyword list L = {w1, . . . , wk} (m ≥ k ≥ 1) in a
data R, the member runs the algorithm BuildIndex of KSS-CKS at Section
4 to create IR = IL as the secure index of R.

DatEnc(R,PKs, SKg, IR): The member encrypts her dataR as follows: chooses

γ
R←− Z∗

q \ {1}, computes

U = P γ and V = R ⊕H ′(e(Q,P ′)γ),

let E(R) = (U, V ) be the ciphertext of M, and uploads the encrypted data
E(R) with its IR to the server.



190 P. Wang, H. Wang, and J. Pieprzyk

DataQuery – Data Search and Download

MakTrp(L′, PKs, SKg): Given a keyword list L′ = {w1, . . . , wk′}, the mem-
ber runs the algorithm Trapdoor of KSS-CKS at Section 4 to create the
trapdoor TL′ of L′, and sends the server the query (TL′ , CTi).

MemChk(CTi, PKs): The server verifies if the following conditions hold

e(ai, Y ) = e(g, bi) and e(X, ai) · e(X, bi)H(IDi) = e(g, ci).

If so, outputs Yes, otherwise, returns the member Access Denied and termi-
nates the protocol.

SrhInd(TL′ , IR, PKs): If the output of MemChk(CTi, PKs) is Yes, for a IR,
the server executes the algorithm Test of KSS-CKS at Section 4. If the
output of Test is 1, the server sends the encrypted data E(R) to the member
and then checks the next secure index, otherwise, goes to the next secure
index. Finally, if there is no data including the specific keywords in the server,
the server returns No Data Matched to the member.

DataDcrypt – Data Decryption

DatAux(E(R), CTi, PKs): For every encrypted data E(R) received, the mem-
ber chooses a random pair (µ, ν) from Z∗

q such that µν = 1 mod q, computes
U ′ = Uµ, then sends the auxiliary information (U ′, CTi) to GM and keeps
ν as her one-time secret key.

GDcKey(U ′, CTi, PKs, SKg,MK): When GM receives (U ′, CTi), she first
checks if the following equations hold

e(ai, Y ) = e(g, bi) and e(X, ai) · e(X, bi)H(IDi) = e(g, ci).

If yes, GM computes the decryption key

D = e(Q,U ′)σ,

and sends it to the member via a secure channel, otherwise, GM sends the
member Access Denied and terminates the protocol.

MemDct(E(R), D, PKs, SKg, ν): On receiving D from GM, the member com-
putes the plaintext

R = V ⊕H ′(Dν · e(Q′, U)).

5.2 Security

The following Lemma 1 and 2 state the properties of unforgeability and confi-
dentiality of group memberships in the proposed extension of KFF-CKS, and
provide user privacy against insiders and data privacy against leaving members,
respectively.

Lemma 1. The group membership authentication process in the proposed ex-
tension of KFF-CKS is secure against impersonation attacks of any collusion in
the group G if LRSW assumption holds.



Keyword Field-Free CKS on Encrypted Data and Extension 191

Proof. First, let’s show that it is hard for any collusion in the group G to forge
a valid membership certificate CT ′ = {ID′, a′, b′, c′} for an outsider M ′ (out of
the collusion).

Let’s consider that the group G is static, that is, no member leaves and joins
the group G.

Claim. It is hard for each collusion of up to t (1 ≤ t ≤ |G|) members in the static
group G to forge an outside user M ′ (out of the collusion) with a membership
certificate CT ′ = {ID′, a′, b′, c′} which can prove that M ′ is a member of the
group G.

Because every member keeps her membership certificate privately, the t-
collusion never knows any other member’s certificates. It is clear that the t-
collusion acts in the same way as a PPT algorithm A in the LRSW assumption
does, who interacting with the oracle OX,Y (·) t times cannot computationally
output a valid triple (a′, b′, c′) on some value H(ID′) that he did not query for.
This implies that the t-collusion has negligible success probability to forge a
member M ′ with a valid membership certificate CT ′ = {ID′, a′, b′, c′} under the
LRSW assumption.

Furthermore, let’s consider that the group G is dynamic. From the view of
the t-collusion as remaining members, after the group G updates (members join-
ing and leaving) a polynomial times T , besides the t pairs {ai, bi} unchanged,

every member Mu of the t-collusion has a set of pairs {ti, c
∏ i

j=0 tj

u }i=0,1,···,T ,
where t0 = 1 and t1, · · · , tT are the random values chosen in the algorithms
MemJon and MemLev. In addition, they also obtain a set of updated public
keys {X

∏ i
j=0 tj}i=0,1,···,T . Although the t-collusion got those extra data from the

update of the group G, in fact, the t-collusion can get this type of data as much
as he wants by computing easily cvu and Xv for some value v. This implies that
all those data do not give any more information. According to the Claim, we
know that the t-collusion in the dynamic group G either cannot computationally
output a valid membership certificate CT ′ = {ID′, a′, b′, c′} for a member M ′

with identity ID′.

Lemma 2. The group membership authentication process in the proposed exten-
sion of KFF-CKS is secure against impersonation attacks of any leaving member
if W-DH and LRSW assumptions hold.

Proof. From the view of the leaving member Mi′ with IDi′ , she has an old
invalid membership certificate CT = {IDi′ , ai′ , bi′ , ci′}, an old public key X and
a new public key Xv, where v is unknown random value to her. Suppose that
she generates a valid membership certificate CT ′ = {ID′

i′ , a
′
i′ , b

′
i′ , c

′
i′} for herself

with a non-negligible probability. Then we build an adversary B that uses Mi′

as a subroutine to break the W-DH assumption with the same non-negligible
probability.

According to the Camenisch and Lysyanskaya’s theorem (Theorem 1 in their
paper [3], which is under the LRSW assumption), it is intractable for Mi′ to
forge a valid membership certificate with new identity (i.e. ID′

i′ �= IDi′). So,



192 P. Wang, H. Wang, and J. Pieprzyk

according to the construction, the forged membership certificate should be that
ID′

i′ = IDi′ , a
′
i′ = ai′ , b

′
i′ = bi′ and c′i′ = cvi′ .

Let P = gu, P v, Q ∈ G be B’s W-DH challenge, where u is a random number
in Zq and v is unknown. B’s goal is to find Qv. To describe conveniently, we
assume that Mi′ was in the initial group and than she left firstly. B simulates
GM to interact with Mi′ as follows:

B does : Interaction⇐====⇒ Mi′ does :

X = P, y
R←− Zq , Y = gy

Setup

−−−−− {Mi′ , IDi′} ⊂ G

...
IDi′← −−−− Query for her certificate

w
R←− Zq, ai′ = Qw, bi′ = ay

i′ ,

ci′ = a
u+H(IDi′)uy

i′

ai′ ,bi′ ,ci′−−−− →
...

...
leaving

← −−−− Left the group G

X = P v
...

...
c′

i′← −−−− CT ′ = {IDi′ , ai′ , bi′ , c
′
i′}

A = (c′i′)
((u+H(IDi′)uy)·w)−1 ...

Finally, B gives Qv = A as the answer to the W-DH challenge.
Let’s check the correctness of the answer.

A = (c′i′ )
((u+H(IDi′ )uy)w)−1

= (ci′ )(v(u+H(IDi′ )uy)w)−1

= (ai′ )(u+H(IDi′ )uy)v((u+H(IDi′ )uy)w)−1

= (ai′ )v·w−1

= (Qw)v·w−1

= Qv

Therefore, B breaks the W-DH assumption.

The following Lemma 3 asserts the user privacy against the GM.

Lemma 3. Data decryption process in the proposed extension of KFF-CKS is
secure for user privacy against the group manager.

Proof. In the process of decryption, GM knows U ′ = Uµ. Because (µ, ν) is a
random pair chosen by the member, ν is the member’s one-time secret key,



Keyword Field-Free CKS on Encrypted Data and Extension 193

and the discrete logarithm problems in both G and G1 are hard to solve, it is
impossible for GM to compute µ in polynomial time. As µ is a one-time random
number, GM cannot distinguish U ′ from a random number in polynomial time.
Therefore, GM is not able to identify the member’s desired data in polynomial
time.

The security of encryption and decryption algorithms used in our scheme is
proved in the Lemma 4.

Lemma 4. The data cryptosystem in the proposed extension of KFF-CKS is
semantically secure.

Proof. Our encryption algorithm uses Boneh and Franklin’s IBE system in a
straightforward way. In the process of decryption, the member gets the decryp-
tion key D = e(Q,U ′)σ from GM. Since the discrete logarithm problems in G1
are hard to solve, it is hard for any PPT adversary to compute the secret key σ,
that means, any PPT adversary cannot compute the decryption key D. As the
proposed data cryptosystem is a variation of Boneh and Franklin’s IBE system,
we immediately have that it is semantically secure.

Based on above four lemmas and Theorem 1 at Section 4 that protects the data
privacy against the server in the proposed extension of KFF-CKS, we have the
following theorem.

Theorem 2. The the proposed extension of KFF-CKS in the dynamic group
setting is secure.

5.3 Discussion

We now compare the proposed extension of KFF-CKS with Wang et al’s scheme
[14] in the areas of computation, communication and space complexity. We use the
data given in [11] to evaluate the security of the scheme under that the security
has to be guaranteed until the year 2020. That means, RSA modulus n is at least
1881 bits, and bilinear pairing systems are over prime fields of at least 188 bits.

5.4 Comparison of Authentication

Since the certificate in our scheme includes 4 points in G, i.e., its size is 752 bits,
and the certificate (called PIN number and secure code) in Wang et al’s scheme
is 2 values in Zn, i.e., its size is 3762 bits. Our authentication is more efficient
than theirs on the communication complexity. The authentication of Wang et al’s
scheme is based on a dynamic RSA accumulator, and ours is based on bilinear
pairing. So, from the view of computation complexity, our authentication is less
efficient. However, this overhead benefits our scheme in another way. When the
member asks GM to decrypt the encrypted data in Wang et al’s scheme, GM does
not verify the membership certificate. This means, GM will decrypt the data and
return it to the sender. If the server administrator does in same way as the member



194 P. Wang, H. Wang, and J. Pieprzyk

does, the security of their scheme will be broken down. If the member also sends
her membership certificate along with the encrypted data to GM, GM must return
the decrypted data to the member who holds the membership certificate instead
of the sender; otherwise, the server administrator can use any member’s certificate
to obtain the data. So, to make their scheme secure, GM must have a directory of
email addresses matching with membership certificates. This would increase the
burden of GM. Our scheme uses the member’s identity as a part of her membership
certificate. If all members use their email addresses as their identities, when GM
wants to send the member the decryption key, she can use the member’s identity
to do directly. This property not only protects the data privacy from the server
administrator, but also gets rid of the burden of GM.

5.5 Comparison of Encryption and Decryption

Because Wang et al’s scheme does not give any detailed construction of encryption
and decryption (in fact, no existing scheme constructs the data cryptosystem),
we have no way to compare the details between these two schemes. We only anal-
yse in general. In Wang et al’s scheme, the data is encrypted twice and decrypted
twice. The server sends a whole encrypted data to the member, the member sends
a whole encrypted data to GM, and then GM sends a whole encrypted data to
the member. So, the communication complexity is 3 times of the encrypted data
size. In our scheme, the data is encrypted and decrypted once. The server sends a
whole encrypted data to the member and the member sends a half (or less half) of
data to GM, and then GM sends a half (or less half) of data (decryption key) to
the member, this means, the communication complexity is at most 2 times of the
encrypted data size. Hence, our scheme is more efficient than theirs in the com-
putation and communication for the encryption and decryption.

6 Conclusions and Open Problems

We proposed a scheme of KFF-CKS on encrypted data with a standard model,
which is the first one for CKS without keyword fields and gives an affirmative
answer to the open problem raised in [7]. Besides, we apply it to the dynamic
group setting. However, the size of a trapdoor in the proposed KFF-CKS scheme
is linear in the number of keywords contained in a secure index, so designing
more efficient KFF-CKS schemes with standard models is an open problem, and
applying to secure disjunctive keyword search and occurrence queries remains
another challenging one.

References

1. Boneh, D., Franklin, M.: Identity-Based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)



Keyword Field-Free CKS on Encrypted Data and Extension 195

2. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

3. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

4. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

5. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-
cryption: Improved Definitions and Efficient Constructions. In: ACM CCS 2006,
pp. 79–88. ACM Press, New York (2007)

6. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report, 2003/216 (February
25, 2004), http://eprint.iacr.org/2003/216/

7. Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Search over Encrypted Data.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–
45. Springer, Heidelberg (2004)

8. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Ny-
berg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer,
Heidelberg (2003)

9. Hwang, Y.H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search
and Its Extension to a Multi-user System. In: Takagi, T., et al. (eds.) Pairing 2007.
LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007)

10. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

11. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. In: Imai, H.,
Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg
(2000)

12. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

13. Park, H.A., Byun, J.W., Lee, D.H.: Secure Index Search for Groups. In: Katsikas,
S.K., López, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp. 128–140.
Springer, Heidelberg (2005)

14. Wang, P., Wang, H., Pieprzyk, J.: Common Secure Index for Conjunctive Keyword-
Based Retrieval over Encrypted Data. In: Jonker, W., Petković, M. (eds.) SDM
2007. LNCS, vol. 4721, pp. 108–123. Springer, Heidelberg (2007)

15. Wang, P., Wang, H., Pieprzyk, J.: Threshold Privacy Preserving Keyword Searches.
In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 646–658. Springer, Heidelberg (2008)

16. Wang, P., Wang, H., Pieprzyk, J.: An Efficient Scheme of Common Secure Indices
for Conjunctive Keyword-based Retrieval on Encrypted Data. In: WISA 2008.
LNCS. Springer, Heidelberg (to appear, 2008)

http://eprint.iacr.org/2003/216/


Analysis and Design of Multiple Threshold Changeable
Secret Sharing Schemes

Tiancheng Lou1 and Christophe Tartary1,2

1 Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084
People’s Republic of China

2 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

loutiancheng860214@gmail.com,
ctartary@ntu.edu.sg

Abstract. In a (r, n)-threshold secret sharing scheme, no group of (r − 1) col-
luding members can recover the secret value s. However, the number of colluders
is likely to increase over time. In order to deal with this issue, one may also re-
quire to have the ability to increase the threshold value from r to r′(> r), such
an increment is likely to happen several times.

In this paper, we study the problem of threshold changeability in a dealer-free
environment. First, we compute a theoretical bound on the information and se-
curity rate for such a secret sharing. Second, we show how to achieve multiple
threshold change for a Chinese Remainder Theorem like scheme. We prove that
the parameters of this new scheme asymptotically reach the previous bound.

Keywords: Secret Sharing Scheme, Threshold Changeability, Information Rate,
Security Rate, Chinese Remainder Theorem, Dealer Free Update.

1 Introduction

A (r, n)-threshold secret-sharing (TSS) scheme is a cryptographic primitive, allowing
a dealer to divide a secret s into n pieces of information called shares (or shadows),
distribute them among a group of n participants in such a way that the secret is recon-
structible from any r shares while any set of r − 1 shadows cannot uniquely determine
s. Classical constructions for threshold secret-sharing schemes include the polynomial-
based Shamir scheme [12], geometry-based Blakley scheme [3] and the integer-based
Chinese Remainder Theorem (CRT) scheme [1].

A common application for TSS schemes is to achieve robustness of distributed secu-
rity systems. A distributed system is called robust if its security is maintained against
an attacker who manages to break into a certain number of components of the system.
In many settings, the attacker capabilities are likely to change over time. This threat
requires the security level (i.e. the threshold value) to vary as well.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 196–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Analysis and Design 197

There is a trivial solution to the problem of increasing the threshold parameter of
a (r, n)-TSS scheme. The participants simply discard their old shares while the dealer
distribute shadows of a (r′, n)-TSS scheme to all participants. However, this solution is
not very attractive since it requires the dealer to be involved after the setup stage as well
as the availability of a secure channel between the dealer and each one of the n group
members. Such secure channels may not exist or may be difficult to establish after the
initial setup phase.

There already exist TSS schemes allowing the threshold parameters to be changed af-
ter the initial setup. Using secret redistribution [6, 11] involves communication
amongst the participants in order to redistribute the secret using a new threshold pa-
rameter. Although this technique can be applied to standard secret-sharing schemes, its
disadvantage is the need of secure channels for communication between participants.
Constructions from [5, 2, 9] do not need such secure channels, but they all require the
initial secret-sharing scheme to be a non-standard one, i.e. it must specially be designed
for threshold increase. Ramp schemes [4, 8] use optimal size of shares but they are
not perfect. Other techniques [13, 14] can be applied to existing schemes even if they
were set up without consideration to future threshold increases. Unfortunately, those
approaches have worse security than the construction presented in [5, 2, 9]. The secret
schemes designed in [10, 16] achieve perfect security before and after threshold modifi-
cation. However, the share size has to be at least twice of the size of secret. Moreover, if
we change to threshold c times, the size of the initial shares needs to be at least (c+ 1)
times as large as the secret’s.

In this paper, we first construct an upper-bound on the security rate (ratio between
the entropy of a largest unauthorized group and the entropy of the secret) and infor-
mation rate (ratio between the share size and the secret size) of a changeable-threshold
scheme. Second, we propose a new CRT-based secret sharing scheme allowing multi-
ple threshold updates. Our construction allows to choose the security rate of the scheme
while having an information rate meeting the previous bound. We will show that our
scheme can achieves perfect security, ideal initial scheme and optimal ramp-scheme
(the ramp-scheme uses optimal size of shares) easily.

In Sect. 2, we briefly recall some definitions about TSS schemes. In Sect. 3, we
discuss the definition of the changeable-threshold secret-sharing scheme as well as the
upper-bound on the security rate and information rate for threshold change. In Sect. 4,
we present our construction allowing to increase the threshold parameter c(≥ 1) times.
After proving its correctness and efficiency, we present two examples: one for standard
initial scheme and one for optimal ramp-scheme. The last section concludes the paper.

2 Preliminaries

In this section, we review some basic definitions related to secret sharing.

Definition 1 (TSS Scheme [13]). Denote P = {P1, P2, · · · , Pn} a group of n partici-
pants. Let S be the set of secrets and let the share of Pi come from a set Si. Denote R
a set of random strings. A (r, n)-Threshold Secret-Sharing (TSS) scheme is a pair of
algorithms called the dealer and the combiner working as follows:



198 T. Lou and C. Tartary

– For a given secret from S and some random string from R, the dealer algorithm
applies the mapping:

Dr,n : S ×R → S1 × S2 × · · · × Sn

to assign shares to participants from P .
– The shares of a subset A ⊆ P of participants can be input into the combiner

algorithm. Denote SA the set of shares of participants from A. The mapping:

Cr,n : SA → S

uniquely determines the secret when |A| ≥ r. Otherwise, it fails to uniquely deter-
mine the secret value.

The previous definition is rather general and it does not specify what can occur when
the secret is not reconstructed. As a consequence, one of the basic problems in the field
of secret sharing schemes is to derive bounds on the amount of information revealed by
at most r − 1 shares.

Definition 2 (Security Rate [15]). For a (r, n)-TSS scheme with secret s, the security
rate φ is the real number defined as:

φ = min
{
H(S|Si1 , . . . , Sim)

H(S)
: {i1, . . . , im} ⊆ {1, . . . , n} andm < r

}
where Si is the i-th share (for i ∈ {1, . . . , n}).

Definition 3 (Perfect TSS Scheme [15]). Consider a (r, n)-TSS scheme with the fol-
lowing properties:

1. if |A| ≥ r thenH(S|SA) = 0
2. if |A| < r thenH(S|SA) = H(S)

where s denote the secret and H is the entropy function. Then, this secret sharing is
called perfect.

Note that, for a perfect scheme, we have: φ = 1. A perfect (r, n)-TSS scheme allows the
dealer to distribute a secret s amongst a group of n participants in such a way that any
r-subgroup of members can reconstruct it while no subsets of less than r participants
can gain any information about s.

Another efficiency parameter of secret sharing schemes is the amount of information
that the participants must keep secret.

Definition 4 (Information Rate [15]). For a (r, n)-TSS scheme with secret s, we call
information rate of the scheme ρ, the value ρ defined as:

ρ = min
{
H(S)
H(Si)

: 1 ≤ i ≤ n
}

where Si is the i-th share (for i ∈ {1, . . . , n}).



Analysis and Design 199

Note that, for any perfect secret sharing scheme, we have: ρ ≤ 1 [15]. The following
definition characterize the property that the information rate is in optimal situation.

Definition 5 (Ideal TSS Scheme [15]). A perfect (r, n)-TSS scheme is called ideal if
and only if ρ = 1.

In other words, a perfect threshold scheme is ideal when the size of the shares is the
same as the secret’s. We can easily see that Shamir’s scheme is ideal.

An example of non-perfect threshold scheme is given by ramp schemes [4]. Such
constructions offer a trade-off between security and share size. We first review the def-
initions of ramp-schemes as well as optimal ramp-schemes [7].

Definition 6 (Ramp Scheme [4]). A (T , n)-threshold secret sharing scheme with se-
cret s is said to be a (C, T , n)-ramp scheme if it satisfies the following properties:

1. If |A| ≥ T , thenH(S|A) = 0.
2. If C < |A| < T , then 0 < H(S|A) < H(S).
3. If |A| ≤ C, thenH(S|A) = H(S).

In a ramp scheme, each share size can be smaller than the secret size. However, the
smaller the share size gets, the more information about the secret is revealed. We have
the following theorem presented in [7].

Theorem 1 ([7]). For any (C, T , n)-ramp scheme, we have:

H(S|SA) ≥ T −R
T − C H(S) and ∀i ∈ {1, . . . , n} H(Si) ≥

H(S)
T − C

Definition 7 (Optimal Ramp Scheme [7]). A (C, T , n)-ramp scheme is said to be

optimal, if it has the property that H(S|SA) =
T −R
T − C H(S) hold for any A ⊆

{1, 2, . . . , n} such that |A| = R and C ≤ R ≤ T and shares are of minimal size

H(Si) =
H(S)
T − C .

3 Threshold Changeability for Secret-Sharing Scheme

3.1 Definition and Efficiency Measures

As said in Sect. 1, it sometimes occurs that the security level be changed before the
secret is to be reconstructed. Let P = {P1, . . . , Pn} be a group of n participants and
denote S the set of secrets.

Definition 8 (Threshold Changeability). A (r0 → r, n)-threshold changeable scheme
is a threshold scheme where the threshold can be increased c (≥ 1) times, r = (r1,
. . . , rc) with ri−1 < ri for i ∈ {1, . . . , c}.

The initial (r0, n)-threshold scheme is denoted Π0 and the ith derived (ri, n)-
threshold scheme is denoted Πi. For any i ∈ {0, . . . , c} and any j ∈ {1, . . . , n},
we let Si,j denote the set of j-th shares ofΠi. There exists one dealer algorithm, c com-
biner (sub-share combiner) algorithms and c n sub-share generation algorithms with
the following properties:



200 T. Lou and C. Tartary

– For a given secret from S and some random string from R, the dealer algorithm
applies the mapping:

Dr0,n : S ×R → S0,1 × · · · × S0,n

to assign shares to participants from P .
– For any share from Si,j , there exists a sub-share generation algorithm:

Er0→r,i,j : Si,j → Si+1,j

to modify shares for increasing the threshold parameter from ri to ri+1 for any
i ∈ {0, . . . , c− 1}.

– For any i ∈ {0, . . . , c}, the shares of a subset A ⊆ P of participants can be
input into the combiner algorithm. Let Si,A denote the set of shares of A in Πi, if
|A| ≥ ri then the mapping:

Cr0→r,i : Si,A → S

reconstructs the secret. And for any ri − 1 participants, it always failed to recover
the secret.

In the definitions given above, the sub-share generation algorithms can be probabilistic
(dealer free). The third point of Definition 8 involves that, for any ri-group G, there
exists j0 ∈ G such that H(si,j0 |si+1,j0) > 0. Indeed, in the opposite situation, there
would be a ri-group G̃ such that: ∀Pj ∈ G̃ H(si,j |si+1,j) = 0. This would imply that
each of the ri members of G̃ could reconstruct his share related to threshold ri from
his share related to the new value ri+1(> ri). Thus, we would not have a (ri+1, n)-
threshold scheme after threshold update which contradicts the definition of threshold
changeability.

Remark. We would like to call the reader’s attention to the fact that old shares are as-
sumed to be deleted after performing any threshold update. That is, after updating the
threshold value from ri to rr+1, each of the n participants keeps the share related to the
new value ri+1 and discards the shadow related to ri (for i ∈ {0, . . . , c− 1}).

The efficiency of a TSS scheme can be measured by its security rate and information
rate. We generalize those definitions to the case of a threshold changeable scheme.

Definition 9 (Security and Information Rates). Let 〈Π0, . . . , Πc〉 be a (r0 → r, n)-
threshold changeable scheme where r = (r1, . . . , rc) with ri−1 < ri for i ∈ {1, . . . , c}.
Let φi denote the security rate of Πi. The security rate φ of the changeable scheme
〈Π0, . . . , Πc〉 is defined as min

i∈{0,...,c}
{φi}. Let ρi denote the information rate ofΠi. The

information rate ρ of the changeable scheme 〈Π0, . . . , Πc〉 is defined as min
i∈{0,...,c}

{ρi}.

We will present the definition of deterministic (r0 → r, n)-threshold changeable
scheme, where r = (r1, r2 · · · rc).



Analysis and Design 201

Definition 10 (Deterministic Threshold Changeable Scheme). Let 〈Π0, . . . , Πc〉 be
a (r0 → r, n)-threshold changeable scheme. The scheme 〈Π0, . . . , Πc〉 is called deter-
ministic, if all the c sub-share generation algorithms are deterministic. In other words,
there exist deterministic functions hi,j , such that si+1,j = hi,j(si,j), where si,j is j-th
shadow of Πi for i ∈ {0, . . . , c− 1} and j ∈ {1, . . . , n}.

Many existing secret-sharing schemes (like Shamir’s construction [12] and the CRT-
based secret sharing [1]) are ideal. We have the following result.

Lemma 1. Let 〈Π0, . . . , Πc〉 be a deterministic (r0 → r, n)-threshold changeable
scheme. If the initial (r0, n)-TSS schemeΠ0 is ideal then the final (rc, n)-TSS scheme
Πc cannot be ideal.

Proof. We demonstrate this result by contradiction. Assume the (rc, n)-TSS scheme
Πc is ideal. We fix i ∈ {1, . . . , n}. We have:

I(S0,i;Sc,i) = H(S0,i) −H(S0,i|Sc,i) = H(Sc,i) −H(Sc,i|S0,i)

So, we get:

H(S0,i|Sc,i) = H(S0,i) −H(Sc,i) +H(Sc,i|S0,i) = H(Sc,i|S0,i)

Since the algorithm to update the threshold is deterministic, we have: H(S0,i|Sc,i) =
H(Sc,i|S0,i) = 0. This means that one can recover S0,i from Sc,i for any i ∈ {1, . . . ,
n}. Thus, the resulting scheme Πc is also a (r0, n)-threshold secret-sharing scheme,
which is impossible. ��

3.2 Upper Bounds on the Security Rate and the Information Rate

Definition 11. Suppose T is a (r, n)-TSS scheme with secret s. It is called a (φ, ρ)
(Semi-Random Dealer and Complete Randomness Recovery Combiner) SRDCRRC-
scheme if it has the following properties:

1. T has security rate φ. This means that we have H(S|Si1 , . . . , Sim) ≥ φH(S) for
any {i1, . . . , im} ⊆ {1, . . . , n} andm < r.

2. T has information rate ρ. This means that we have H(Si) ≤ H(S)
ρ for any i ∈

{1, . . . , n}.
3. When the dealer of T wants to share s, he secretly chooses one random string a

and uses the pair α = (s, a) to construct the n shares. The method to output n
shares using α is deterministic.

4. The combiner of T can recover the secret s if and only if it can uniquely determine
α. In other words, by any r shares, the combiner can reconstruct not only the secret
s but also all random bits a.

Lemma 2. Suppose T is a (r, n)-threshold secret-sharing scheme as well as a (φ, ρ)
SRDCRRC-scheme. Let Si denote i-th share of T . We have:H(α) = H(S1, . . . , Sr).



202 T. Lou and C. Tartary

Proof. Since the dealer algorithm is deterministic, we have:H(S1, . . . , Sr|α) = 0. On
the other hand, using S1, . . . , Sr, the combiner can recover the vector α. So, we have:
H(α|S1, . . . , Sr) = 0. As a consequence, we get:H(α) = H(S1, . . . , Sr). ��

Remark. The previous result is valid for any r shares. We focused on S1, . . . , Sr as this
will be used to demonstrate the following lemma.

Lemma 3. Suppose T is a (r, n)-threshold secret-sharing scheme with secret s as well
as a (φ, ρ) SRDCRRC-scheme. Then:H(α) ≥ rφH(S).

Proof. Let Si denote the i-th share of T . According to Lemma 2, we have:

H(α) = H(S1, . . . , Sr) = H(S1) +H(S2, . . . , Sn|S1)
= H(S1) +H(S2|S1) +H(S3, . . . , Sn|S1, S2)

=
r∑

k=1

H(Sk|S1, . . . , Sk−1)

We get:H(α) ≥
r∑

k=1

H(Sk|{S1, . . . , Sr} \ {Sk}).

Let A be a r-subset and choose any participant i from A, define B = A \ {i} and the
size of B is r − 1. Let SB denote the shares of all participants in B. Since T has a
security rate φ, we haveH(S|SB) ≥ φH(S). Using SB, we get a set of possible secrets
S′(⊆ S) such that s ∈ S′ andH(S′) = φH(S) where S is the set of all secrets. Hence,
for each s′ ∈ S′, there is a distribution rule[15] dist(s′) such that the shares of B are

the same. Since A is authorized, we must have: Sdist(s1)
i �= S

dist(s2)
i when s1 �= s2 and

s1, s2 ∈ S′. Thus:H(Si|SB) ≥ H(S′) ≥ φH(S).

Thus: ∀k ∈ {1, . . . , r} H(Sk|{S1, . . . , Sr}\{Sk}) ≥ φH(S). This achieves our proof.
��

Theorem 2. Suppose that there exists a deterministic algorithm for changing a (r, n)-
TSS scheme T1 to (r′, n)-TSS scheme T2. Assume that T1 is a (φ1, ρ1) SRDCRRC-
scheme and T2 is a (φ2, ρ2) SRDCRRC-scheme. We have:

min(ρ1, ρ2) ×min(φ1, φ2) ≤
r

r′

Proof. The dealer algorithm of T2 is the dealer algorithm of T1 followed by the de-
terministic algorithm A to change the threshold. According to Lemma 3, we have:
H(α) ≥ r′φ2H(S).

Let S1,i denote the i-th share of T1. According to Lemma 2, we have:

H(S1,1, . . . , S1,r) = H(α) ≥ r′φ2H(S)

So:

max
1≤i≤n

H(S1,i)≥ max
1≤i≤r

H(S1,i)≥
1
r

r∑
i=1

H(S1,i) ≥
1
r
H(S1,1, . . . , S1,r) ≥

r′φ2

r
H(S)



Analysis and Design 203

Thus, we get:

ρ1 ≤
H(S)

max
1≤i≤n

H(S1,i)
≤ H(S)

r′φ2
r H(S)

≤ r

r′φ2

Therefore, we have:

min(ρ1, ρ2)×min(φ1, φ2) ≤ ρ1φ2 ≤
r

r′

��

Remark. Note that if both T1 and T2 are perfect secret-sharing schemes, then the infor-
mation rate of 〈T1, T2〉 is at most r

r′ . Similarly, if both T1 and T2 have shares as large as
the secret, then the security rate of 〈T1, T2〉 is at most r

r′ .

4 Threshold Changeability for CRT Secret-Sharing Schemes

4.1 CRT Secret Sharing Scheme

We now describe the CRT secret sharing scheme presented in [1]. Denote Si the set
of all i-subsets of {1, . . . , n}. A set of pairwise coprime integers {p,m1, . . . ,mn} is
chosen subject to the following:

∃M :

(
∀S ∈ Sr

∏
i∈S

mi ≥M
)

and

(
∀S ∈ Sr−1

∏
i∈S

mi ≤
M

p

)

The reader may notice that the original definition by [1] is slightly different. However,
it can be shown that both definitions are equivalent.

Dealer. Suppose the secret value is s, we can assume that 0 ≤ s < p. Selecting a ran-
dom integer A in [0, M

p − 1] and set y = s + Ap. The set of shadows is (y1, . . . , yn),
where yi = y modmi for i ∈ {1, . . . , n}.

Combiner. To recover secret s, it clearly suffices to find y. If yi1 , . . . , yir are known,

then y is known modulo N1 =
r∏

j=1
mij (CRT). As N1 ≥ M , this uniquely determines

y and thus s. On the other hand, if only r − 1 shadows were known, essentially no
information about the key can be recovered. If yi1 , . . . , yir−1 are known, then we have

the value of y modulo N2 =
r−1∏
j=1
mij . Since M

N2
≥ p and gcd(N2, p) = 1, the collection

of numbers ni with ni ≡ y (modN2) and ni ≤M cover all congruence classes modulo
p, with each class containing at most one more or one less ni than any other class.

The CRT sharing scheme described above is perfect. However, the construction that
we will present in the next section will not as its security rate will not be equal to 1.



204 T. Lou and C. Tartary

4.2 A New CRT-Based Secret Sharing Scheme

In this section, we present our construction which is a modification of the CRT se-
cret sharing scheme. Let n be the number of participants, we choose a set of integers
{p, q,m1, . . . ,mn, w1, . . . , wn} as follows:

1. gcd(mwi

i ,m
wj

j ) =gcd(mi,mj) = 1 for i �= j,
2. gcd(p,mwi

i ) =gcd(p,mi) = 1 for all i and q|p,

3. ∃M :

(
∀S ∈ Sr

∏
i∈S

mwi

i ≥M
)

and

(
∀S ∈ Sr−1

∏
i∈S

mwi

i ≤ M

q

)
.

Share Construction. Suppose the secret value is s, we can assume that 0 ≤ s < p.
Selecting a random integer A in [0, M

p − 1], and set y = s + Ap. The set of shadows
are (y1, . . . , yn), where yi = y modmwi

i .

Secret Recovery. To recover secret s, it clearly suffices to find y. If yi1 , . . . , yir are

known, then y is known modulo N1 =
r∏

j=1
m

wij

ij
(CRT). As N1 ≥ M , this uniquely

determines y and thus s.

On the other hand, if only r − 1 shadows were known, we can not uniquely deter-
mine the secret s. If yi1 , . . . , yir−1 are known, then we have the value of y modulo

N2 =
r−1∏
j=1
m

wij

ij
. Since M

N2
≥ q and gcd(N2, p) = 1, the collection of numbers ni with

ni ≡ y (mod N2) and ni ≤ M cover all congruence classes modulo q, with each class
containing at most one more or one less ni than any other class. So, the security rate of
the scheme:

φ =
H(x|yi1 , yi2 , . . . , yir−1)

H(x)
=

log q
log p

= logp q

The information rate of the scheme is:

ρ =
log p

log (max{mwi

i : 1 ≤ i ≤ n}) =
log p

max{wi logmi : 1 ≤ i ≤ n}

Remark. If the parameters p and q are equal, we can set m′
i = mwi

i such that
{p,m′

1, . . . ,m
′
n} became a standard CRT secret sharing scheme defined in Sect. 4.1.

4.3 Construction of a Multiple Threshold Changeable Secret Sharing Scheme

For the threshold increase problem, the basic idea of our method is the following one:
to increase the threshold parameter from r to r′ > r, the participants decrease values
from wi to w′

i < wi.
For any φ ∈ (0, 1], we can get a (r0 → r, n)-threshold changeable scheme, such that

the security rate is at least φ and the information rate ρ is at least r0
rc φ . So, the bound

constructed in Theorem 2 is met with equality.
Suppose the secret value is s, we can assume that 0 ≤ s < B. Let wi,j denote the

value of wi after the j-th transitions (the i-th share of scheme Πj), for 1 ≤ i ≤ n and
0 ≤ j ≤ c. Let φ be any element of (0, 1]. We construct our scheme as follows:



Analysis and Design 205

1. GC(s)(Public Parameter Generation)
(a) Pick any integer u ≥

⌈
r2

c

r0

⌉
, set k = r0 · u and d = k · rc.

(b) Pick any integer � ≥ rc + φ·log2 B
k + 2 log2 n, choose n+ 1 distinct primes

m0 < m1 < · · · < mn from the interval [2�, 2�+1]. Estimates of the density of
primes show that one could easily find primesmi.

(c) Pick a prime m̂ from the interval [2�−rc , 2�+1−rc ].

(d) Set M = md
0, q = m̂k and p = m̂

k
φ (we have: p ≥ 2(�−rc) k

φ ≥ 2log2 B ≥ B).
(e) Pick uniformly at random a numberA in [0, M

p − 1].
2. D(s,A)(Dealer Setup)

To share secret s, set y = s + Ap. Set wi,0 =
⌈

d
r0

⌉
, and the i-th initial share is

si,0 = y modmwi,0
i .

3. E(si,j)(Sub-share Generation)
To generate sub-shares, let si,j denote the i-th share of Πj (the scheme after j

changes). Set wi,j+1 =
⌈

d
rj+1

⌉
and the sub-share is: si,j+1 = si,j modmwi,j+1

i .
4. C(si,S,j)(Combiner)

To recover s, it clearly suffices to find y. Suppose S = {v1, . . . , vrj}, if sv1,j , . . . ,
svrj

,j are known, by the Chinese remainder theorem, y is known modulo N =
rj∏

k=1
m

wvk,j

vk . We will prove that N ≥ p in the next section.

In this settings, only p, q,m1, . . . ,mn, r0, rc need to be publicly known when setting
up the original scheme. When the participants want to increase the threshold value ri,
they simply need to agree on the new value ri+1. Each of them can compute his new
share without any other interaction.

4.4 Scheme Analysis

In this section, we want to proof that our scheme satisfies the following three conditions
at any step j ∈ {0, . . . , c}.

C1 : ∀(i, i′) ∈ {1, . . . , n} × {1, . . . , n} gcd(mwi,j

i ,m
wi′,j

i′ ) = 1 for i �= i′,
C2 : ∀i ∈ {1, . . . , n} gcd(p,mwi,j

i ) = 1 and q|p,

C3 :

(
∀S ∈ Srj :

∏
i∈S

m
wi,j

i ≥M
)

and

(
∀S ∈ Srj−1 :

∏
i∈S

m
wi,j

i ≤ M

q

)
.

For any j ∈ {0, . . . , c}, conditions C1 and C2 are trivially satisfied due to the choice of
p, q,m1, . . . ,mn by the dealer. The proofs of the following two lemmas can be found
in Appendix A and Appendix B respectively.

Lemma 4. For any j ∈ {0, . . . , c}, Condition C3 is satisfied if the following two in-
equalities are satisfied:

∀S ∈ Srj

∑
i∈S

wi,j ≥ d (1)

∀S ∈ Srj−1

∑
i∈S

wi,j ≤ d− k (2)



206 T. Lou and C. Tartary

Lemma 5. For any j ∈ {0, . . . , c}, (1) and (2) hold.

Combining Lemma 4 and Lemma 5, we can prove that the scheme satisfies the three
conditions C1, C2, C3 for any j ∈ {0, . . . , c}.

Our construction is a (r0 → r, n)-threshold changeable scheme. The following the-
orem shows that it has security rate φ and the information rate of the scheme ρ asymp-
totically equals to r0

rc φ for any 0 < φ ≤ 1.

Theorem 3 (Security and Information Rate). For any 0 < φ ≤ 1, the (r0 → r, n)-
threshold changeable scheme has security rate φ. In addition, it asymptotically meets
with equality the upper bounds in Theorem 2.

Proof. For any 0 < φ ≤ 1, the security rate of the scheme is:

logp q =
log q
log p

=
log m̂k

log m̂
k
φ

=
k log m̂
k
φ log m̂

= φ

The information rate ρ of the scheme is:

ρ ≥ min
1≤i≤n

{
H(S)
H(Si)

}
≥

log
(
m̂

k
φ

)
max

1≤i≤n, 0≤j≤c

{
log
(
m

wi,j

i

)} ≥
(�− rc) k

φ

max
1≤i≤n,0≤j≤c

{(�+ 1)wi,j}

Therefore, we have:

ρ ≥
(�− rc) k

φ

(�+ 1)
⌈

d
r0

⌉ ≥ �− rc
�+ 1

× r0 k

rc k + r0 − 1
× 1
φ
≥ r0
rc φ

× �− rc
�+ 1

× k

k + (r0−1)
rc

For any j ∈ {0, · · · , c}, it is easy to see that Πj is a SRDCRRC-scheme (as defined in
Sect.3.2). So, we have:

ρ ≤ r0
rcφ

If � and k are asymptotically large, then we have:

ρ =
r0
rcφ

Note that "� large" means that u is large. So, the upper bound in Theorem 2 is met with
equality. ��

4.5 Comparison

In this section, we want to compare our construction with previous methods from
[10, 16, 13, 14, 7]. It should be remembered that φ is to be chosen during the set-up
phase. We will see that for different values of φ, 〈Π0, . . . , Πc〉 can be perfectly secure
(φ = 1), an asymptotically optimal ramp-scheme (φ = 1

T −C ) or it can use a standard
initial scheme asΠ0.



Analysis and Design 207

The secret sharing schemes designed in [10, 16] achieve perfect security before and
after threshold modification. However, the share size has to be at least twice of the size
of secret. Moreover, if we change to threshold c times, the information rate is at most

1
c+1 . We have the following result for our construction which is a direct consequence of
Theorem 3.

Proposition 1 (Perfect Secure Changeable Scheme). Let 〈Π0, . . . , Πc〉 be a
(r0 → r, n)-threshold changeable scheme (where r = (r1, . . . , rc)) as constructed
in Sect. 4.3. If we set φ = 1, then 〈Π0, . . . , Πc〉 has security rate 1 and information
rate ρ such that:

r0
rc

× �− rc
�+ 1

× k

k + (r0−1)
rc

≤ ρ ≤ r0
rc

This proposition involves that each (rj , n)-TSS scheme Πj achieves perfect secrecy
(for any j ∈ {1, . . . , c}). This means that the secret s is reconstructible from any rj
shares while no information about s leaks out from any set of ri − 1 shadows.

Techniques in [13, 14] can be applied to existing schemes even if they were set up
without consideration of future threshold increases. This is called the standard initial
scheme approach. Unfortunately, those constructions have worse security. In addition,
the secret recovery is only probabilistic. Our construction always guarantees s to be
recovered.

We will show how to construct a threshold changeable secret sharing scheme
〈Π0, . . . , Πc〉, where Π0 is a standard CRT scheme (as defined in Sect. 4.1), for any
given (r, n) and r = (r0, . . . , rc) with r0 = r. Our idea is to use the construction from
Sect. 4.3 which is valid for any (n, r0, . . . , rc). We simply need to choose the construc-
tion parameter φ of 〈Π0, . . . , Πc〉 so that Π0 is standard scheme. We use the next two
lemmas, the proofs of which are in Appendix C and Appendix D respectively.

Lemma 6. For a (r0 → r, n)-threshold changeable scheme 〈Π0, . . . , Πc〉 where
r = (r1, . . . , rc), if we set φ = r0

rc
, then the initial schemeΠ0 has perfect security.

Lemma 7. For a (r0 → r, n)-threshold changeable scheme 〈Π0, . . . , Πc〉 where
r = (r1, . . . , rc), if we set φ = r0

rc
, then the initial scheme Π0 is a standard CRT

scheme.

When a secret sharing is set-up, the dealer ignores what security level will be required
in the future. Thus, the value rc is a priori unknown. We would like to emphasized that
this issue can be overcome easily. Indeed, when setting-up the scheme the dealer simply
consider the pair (r0, rc′) where rc′ = n. He can construct 〈Π0, Πc′〉. When the dif-
ferent threshold updates occur, the participants can recursively construct 〈Π0, Π1, Πc′〉,
〈Π0, Π1, Π2, Πc′〉, . . . , 〈Π0, Π1, Π2, . . . , Πc′〉 without interacting with the dealer.
Note that this technique allows to design an (intermediate) SSS for any threshold value
from {r0 + 1, . . . , n}.

We can use our method to construct an asymptotically optimal (C, T , n)-ramp sche-
me Π . The idea of our construction is the following one. Set φ = 1

T −C , and use our
method from Sect. 4.3 to construct an ((C − 1) → T , n)-threshold changeable scheme



208 T. Lou and C. Tartary

π̂ = 〈Π0, Π1〉 where Π = Π1. We have the following result, the proof of which is in
Appendix E.

Theorem 4. The secret sharing scheme Π constructed by the previous method is
asymptotically an optimal (C, T , n)-ramp scheme.

5 Conclusion

In this paper, we first studied the properties of threshold changeable schemes. We de-
duced some bounds on the information and security rates for these constructions. Sec-
ond, we introduce a new CRT-based secret sharing, allowing multiple threshold changes
after the original set-up phase without requiring any interactions with the dealer. One
benefit of our construction is that the secret is always guaranteed to be recovered af-
ter any threshold update contrary to [13, 14] where recovery is only probabilistic. We
also demonstrated that a suitable choice of the security rate φ led to a perfectly secure
construction. As in [13, 14], a point of interest to further investigate is to deal with
malicious participants who deviate from the threshold update protocol.

Acknowledgments

The authors would like to thank Professor Xiaoming Sun for valuable discussions on
secret sharing. The authors are also grateful to the anonymous reviewers for their com-
ments to improve the quality of this paper. The two authors’ work was supported by the
National Natural Science Foundation of China grant 60553001 and the National Ba-
sic Research Program of China grants 2007CB807900 and 2007CB807901. Christophe
Tartary’s research was also financed by the Ministry of Education of Singapore under
grant T206B2204.

References

[1] Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on
Information Theory IT-29(2), 208–210 (1983)

[2] Barwick, S.G., Jackson, W.-A., Martin, K.M.: Updating the parameters of a threshold
scheme by minimal broadcast. IEEE Transactions on Information Theory 51(2), 620–633
(2005)

[3] Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 National Computer Con-
ference, New York, USA, June 1979, pp. 313–317. AFIPS Press (1979)

[4] Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

[5] Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing schemes.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125. Springer, Heidelberg
(1994)

[6] Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and its appli-
cations. Technical Report ISSE TR-97-01, George Mason university (1997)

[7] Jackson, W.-A., Martin, K.M.: A combinatorial interpretation of ramp schemes. Aus-
tralasian Journal of Combinatorics 14, 51–60 (1996)



Analysis and Design 209

[8] Maeda, A., Miyaji, A., Tada, M.: Efficient and unconditionally secure verifiable threshold
changeable scheme. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp.
402–416. Springer, Heidelberg (2001)

[9] Martin, K.: Untrustworthy participants in secret sharing schemes. In: Cryptography and
Coding III, vol. 45, pp. 255–264. Oxford University Press, Oxford (1993)

[10] Martin, K.M., Pieprzyk, J., Safavi-Naini, R., Wang, H.: Changing thresholds in the absence
of secure channels. Australian Computer Journal 31, 34–43 (1999)

[11] Martin, K.M., Safavi-Naini, R., Wang, H.: Bounds and techniques for efficient redistribu-
tion of secret shares to new access structures. The Computer Journal 42(8), 638–649 (1999)

[12] Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
[13] Steinfeld, R., Pieprzyk, J., Wang, H.: Lattice-based threshold-changeability for standard

CRT secret-sharing schemes. Finite Field and their Applications 12, 653–680 (2006)
[14] Steinfeld, R., Wang, H., Pieprzyk, J.: Lattice-based threshold-changeability for standard

Shamir secret-sharing schemes. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 170–186. Springer, Heidelberg (2004)

[15] Stinson, D.R.: Cryptography: Theory and Practice. 3rd edn. Chapman & Hall/CRC, Boca
Raton (2006)

[16] Tamura, Y., Tada, M., Okamoto, E.: Update of access structure in Shamir’s (k, n) threshold
scheme. In: The 1999 Symposium on Cryptography and Information Security, Kobe, Japan,
January 1999, vol. I, pp. 469–474 (1999)

A Proof of Lemma 4

Let S be any element of Srj . We have: ∀i ∈ {1, . . . , n}mi > m0. Thus, if we have∑
i∈S

wi,j ≥ d then we obtain:
∏
i∈S

m
wi,j

i ≥ md
0 ≥M .

Let S be any element of Sr−1. Assume that
∑
i∈S

wi,j ≤ d− k. We get:

∏
i∈S

m
wi,j

i ≤
∏
i∈S

(2�+1)wi,j ≤2
(�+1)

∑
i∈S

wi,j

≤2(�+1)(d−k)≤ 2�d(
2�+1−d

k

)k
≤ 2�d

(2�+1−rc)k

So, we have: ∏
i∈S

m
wi,j

i ≤ M

q

.

B Proof of Lemma 5

We first demonstrate that (1) holds. Let j be any element of {0, . . . , c} and let S be any
element of Srj . We have: ∑

i∈S

wi,j ≥ rj
⌈
d

rj

⌉
≥ d



210 T. Lou and C. Tartary

Now, we want to demonstrate (2). We consider j = c. Let S be any element of Src . We
have: ∑

i∈S

wi,j = (rc − 1)
⌈
d

rc

⌉
= (rc − 1) k = d− k

Assume that j ∈ {0, . . . , c− 1}. We have:

k ≥ r0
⌈
r2c
r0

⌉
≥ r0

⌈
1
r0

× (rc−1 − 1)2

rc − rc−1

⌉
≥ (rc−1 − 1)2

rc − rc−1
≥ (rj − 1)2

rc − rj
In addition, we have the following bound:⌈

d

rj

⌉
≤
⌊
d+ rj − 1

rj

⌋
≤ d+ rj − 1

rj

Let S be any element of Srj , we have:∑
i∈S

wi,j ≤ (rj − 1)
⌈
d

rj

⌉
≤ (rj − 1)

d+ rj − 1
rj

≤ (rj − 1)(k rc + rj − 1)
rj

≤ k rc −
k rc − r2j + 2rj − 1

rj

≤ d− k rc − (rj − 1)2

rj

≤ d− k
(
rc
rj

− (rj − 1)2

k rj

)
If rj = 1 then, we have: ∑

i∈S

wi,j ≤ d− k
rc
rj

≤ d− k

Otherwise, we have:

∑
i∈S

wi,j ≤ d− k

⎛⎝rc
rj

− (rj − 1)2
(rj−1)2
rc−rj

rj

⎞⎠ ≤ d− k

C Proof of Lemma 6

Let S be any element of Sr0−1. Firstly, we want to prove that
∏
i∈S

m
wi,0
i ≤ M

p . Since

r0|k, we have r0|d. Therefore:

wi,0 =
⌈
d

r0

⌉
=
d

r0



Analysis and Design 211

We get: ∑
i∈S

wi,0 = (r0 − 1)
d

r0
= d− d

r0
= d− k rc

r0

We obtain:

∏
i∈S

m
wi,0
i ≤

∏
i∈S

(2�+1)wi,0 ≤ 2
(�+1)

∑
i∈S

wi,0

≤ 2(�+1)(d−k rc
r0

) ≤ 2�d(
2

�+1− d

(k
rc
r0 )
)k rc

r0

Finally, we have: ∏
i∈S

m
wi,0
i ≤ 2�d(

2�+1− d
k

) k
φ

≤ M

p

If only r0 − 1 shares yi1 , . . . , yir0−1 were known, then have have the value of y modulo

N3 =
r0−1∏
λ=1

m
wiλ

iλ
. Since N3 ≤ M

p and gcd(N3, p) = 1, the collection of numbers ni

with ni ≡ y modN3 and ni ≤ M cover all congruence classes mod p, with each class
containing at most one more or one less ni than any other class. Thus, no useful infor-
mation(even probabilistic) is available without r shares. Therefore, the initial scheme
Π0 is perfect.

D Proof of Lemma 7

Set m′
i = m

wi,0
i . Since {p,m1, . . . ,mn} are pairwise coprime, we always have pair-

wise coprime integers {p,m′
1, . . . ,m

′
n}. Now, we want to prove that the integers

{p,m′
1, . . . ,m

′
n} satisfy the following conditions:(
∀S ∈ Sr

∏
i∈S

m′
i ≥M

)
and

(
∀S ∈ Sr−1

∏
i∈S

m′
i ≤

M

p

)

According to Lemma 4 and Lemma 5, we have:

∀S ∈ Sr

∏
i∈S

mi ≥M

Using the result in the proof of Lemma 6, we get:

∀S ∈ Sr−1

∏
i∈S

mi ≤
M

p

Therefore,Π0 is a standard CRT scheme.



212 T. Lou and C. Tartary

E Proof of Theorem 4

Let Si denote the i-th share ofΠ . For |A| = R, C ≤ R ≤ T , we have

H(S|SA) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1,

log

⎛⎜⎝ M∏
i∈A

mk
i

⎞⎟⎠
log m̂

k
φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
H(S)

= min

⎧⎪⎪⎨⎪⎪⎩1,

d logm0 −
∑
i∈A

(k logmi)

k
φ log m̂

⎫⎪⎪⎬⎪⎪⎭H(S)

So, we have:

H(S|SA) ≥ min
{

1,
� d−R k (�+ 1)

k (�− T + 1) (T − C)

}
H(S)

≥ min
{

1,
� T −R (�+ 1)

(�− T + 1) (T − C)

}
H(S)

and:

H(S|SA) ≤ min
{

1,
(�+ 1) d−R k �
k (�− T ) (T − C)

}
H(S)

≤ min
{

1,
(�+ 1) T −R �
(�− T ) (T − C)

}
H(S)

If � is asymptotically large, then we have:

H(S|SA)
H(S)

=
T −R
T − C

Therefore, the information rate:

ρ =
H(Si)
H(S)

=
logmk

i

log m̂
k
φ

=
k logmi

k
φ log m̂

So, we have:
H(Si)
H(S)

≥ �

(T − C) (�− T + 1)



Analysis and Design 213

and:
H(Si)
H(S)

≤ �+ 1
(T − C) (�− T )

Finally, we deduce that, when � is asymptotically large, we have:

H(Si)
H(S)

=
1

T − C

Therefore, the schemeΠ is an optimal ramp scheme.



Black-Box Constructions for Fully-Simulatable
Oblivious Transfer Protocols

Huafei Zhu

C&S Department, I2R, A-STAR, Singapore
huafei@i2r.a-star.edu.sg

Abstract. This paper studies constructions of
(

k
1

)
- oblivious transfer

protocols in a black-box way. The security of
(

k
1

)
- oblivious transfer

protocols is defined in the real/ideal world simulation paradigm (i.e.,
the security employs the real/ideal world paradigm for both senders and
receivers and thus our construction is fully-simulatable). The idea be-
hind of our constructions is that we first extend the notion of privacy for
defensible adversaries in the context of bit-transfer protocols by Ishai,
Kushilevitz, Lindell and Petrank at STOC’2006 to the notion of privacy
for defensible adversaries in the context of

(
k
1

)
-oblivious transfer proto-

cols, and then propose black-box constructions of
(

k
1

)
- oblivious transfer

protocols secure against defensible adversaries. Finally, we boost the se-
curity of our protocols in order to obtain protocols that are secure against
malicious adversaries in the fully-simulatable paradigm. We prove that
there exist protocols for secure

(
k
1

)
- oblivious transfer without an hon-

est majority and in the presence of static malicious adversaries that
rely only on black-box access to a homomorphic encryption scheme. By
applying the well-known results of Kilian, we further claim that there
exist protocols for secure computation without an honest majority and
in the presence of static malicious adversaries that rely only on black-box
access to a homomorphic encryption scheme.

Keywords: Black-box constructions, defensible adversary, malicious
adversary, oblivious transfer protocols.

1 Introduction

Notions of reducibility in a black-box way between cryptographic primitives
are important. Impagliazzo and Rudich [9] observe that most implications in
cryptography are proved using a reduction, where the primitive is treated as a
black-box and they further show that if the primitive is secure in a black-box
way then the construction is also secure. Starting from the seminal paper of
Impagliazzo and Rudich, a rich line of works tries to draw the border between
possibility and impossibility for black-box reductions in cryptology. For example,
Simon [12] shows that no provable construction of a collision-free hash function
can exist based solely on a black-box one-way permutation. This result can
be viewed as a partial justification for the common practice of treating the

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 214–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Black-Box Constructions 215

collision-free hash function as a cryptographic primitive, rather than attempting
to derive it from a weaker primitive. Gertner, Malkin, and Reingold [3] study
the efficiency of constructions for pseudo-random generators and universal one-
way hash functions based on black-box access to one-way permutations and the
relationship between public key encryption and oblivious transfer in [2], [3] and
[1]. Horvitz and Katz [7] study black-box constructions of commitments and
show that their bounds are tight for the case of perfectly binding schemes in the
framework of Impagliazzo and Rudich.

The benefit of black-box constructions is that in cases where previous con-
structions are non-black-box, the new black-box constructions will yield more
efficient protocols that are simpler to describe and to implement. For example,
the current non-black-box construction of GMW protocols [5] requires parties
to prove in zero-knowledge statements that involve the computation of a trap-
door permutation. These zero-knowledge protocols in turn invoke cryptographic
primitive for every gate of a circuit computing the trap-door permutation. In
contrast, a black-box construction of oblivious transfer from a trap-door per-
mutation would make the number of invocations of the primitive independent
of the complexity of implementing the primitive, thus making oblivious transfer
more efficient.

Black-construction for secure oblivious transfer protocols is of theoretical in-
terest due to its general importance for constructing general protocols for secure
computation [13] and [10]. Very recently, Ishai, Kushilevitz, Lindell and Petrank
[8] show a black-box construction of secure bit oblivious transfer protocol that
is secure in the ideal/real world model using only black-box access to a family of
enhanced trap-door permutations or a to a homomorphic public-key encryption
scheme. The idea behind their implementation is that they begin by construct-
ing oblivious transfer protocols that use only black-box access to an enhanced
trapdoor permutation or a homomorphic encryption schemes but provide rather
weak security guarantees (protocols that are secure in the presence of defen-
sible adversaries) and then boost the security of these protocols in order to
obtain protocols that are secure in the presence of malicious adversaries. Their
black-construction for secure oblivious transfer protocols uses the

(2
1

)
-oblivious

transfer protocol that is implicit in [11]. As a result, the security proof of the
protocols presented in [8] relies on the fact that the sender’s input are two bits
(see Appendix A for more details).

We further remark that this input restriction cannot be removed for the secu-
rity proof of the schemes presented in [6] as well since the reduction of [6] from
the semi-honest bit-oblivious transfer protocol to the defensible bit-oblivious
transfer protocols uses the reduction of [8] as a subroutine. A well motivated re-
search problem is thus to study secure oblivious transfer without the limitation
of sender’s input in a black-box way.

1.1 This Work

This paper studies constructions of
(
k
1

)
- oblivious transfer protocols in a black-

box way. The security of
(
k
1

)
- oblivious transfer protocols is defined in the



216 H. Zhu

real/ideal world simulation paradigm. We stress that the security of protocols
presented in this paper employs the real/ideal world paradigm for both senders
and receivers and thus our construction is fully-simulatable. To achieve the goal,
we first extend the notion of privacy for defensible adversaries in the context of
bit-transfer protocols of [8] to the notion of privacy for defensible adversaries in
the context of

(
k
1

)
-oblivious transfer protocols and then generalize the result of [8]

to construct
(
k
1

)
- oblivious transfer that is provably secure in the real/ideal world

model ([4], Chapter 7) in a black-box way. We prove the following statement:

Theorem: There exist protocols for secure
(
k
1

)
- oblivious transfer without an

honest majority and in the presence of static malicious adversaries that rely only
on black-box access to a homomorphic encryption scheme.

Having constructed secure oblivious transfer protocols in a black-box way, it
is suffice to apply the well-known results of Kilian [10] that shows that any func-
tionality can be securely computed using black-box access to a secure oblivious
transfer. We therefore have the following statement:

Corollary: There exist protocols for secure computation without an honest
majority and in the presence of static malicious adversaries that rely only on
black-box access to a homomorphic encryption scheme.

1.2 The Technique

To generalize
(2
1

)
-oblivious transfer protocols presented in [8] to

(
k
1

)
- oblivi-

ous transfer protocols presented in this paper, we will first extend Kushilevitz-
Ostrovsky protocol to the general case. That is, we will use linear combination
of encryption E(mi)xiE(1)yi for each mi (0 ≤ i ≤ k − 1), where {mi}k−1

i=0 is
the sender’s input while (xi, yi) is a pair of receiver’s random input. The main
difference between our protocol and the Kushilevitz and Ostrovsky protocol is
that a public/secret key pair (pk, sk) is generated by a sender in our imple-
mentation while a public/secret key pair (pk, sk) is generated by a receiver in
the Kushilevitz and Ostrovsky protocol. We will argue that such a modification
ensures the proposed

(
k
1

)
-oblivious transfer protocol secure against defensible

adversaries (see Section 3 for more details) in a convenient way.
To boost the security of our protocol in order to obtain protocols that are

secure against malicious adversaries in the fully-simulatable paradigm, we make
use of the cut-and-choose technique so that if a malicious party is cheated then
it will be caught with non-negligible probability. That is, we allow a sender
S to choose a pair of keys (pk, sk) ← G(1n), and accesses to the encryption
algorithm in a black-box way to obtain a cipher-text ej =Epk(mj) of the message
mj and then send ej (j = 0, · · · , k − 1) and pk to the receiver R. For each
ej (j = 0, · · · , k − 1), the receiver R randomly chooses t strings {(x1,j , y1,j),
· · · , (xt,j , yt,j)} and computes ci,j= e

xi,j

j E(1)yi,j . R then randomly reorders all
computed {ci,j} (i=1, · · · , t and j=0, · · · , k − 1) to generate a random matrix.
S and R run a secure two-party coin tossing protocol that accesses a one-way
function in a black-box way for generating a string of length tk, where t is
a security parameter. The string r will be used to define a set of indices I



Black-Box Constructions 217

={ri,j = 0}, where i=1, · · · , t, j=0, · · · , k − 1. For every (i, j) ∈ I, the receiver
R provides a defense (xi,j , yi,j). At the end of the protocol, the receiver R sends
an encryption of linear combination of a message (i.e., Epk(xmσ + y) to S and
obtains a decryption from S. Once R has a correct decryption at hand, it can
extract mσ from the received decryption with the help of auxiliary strings (x, y)
generated previously by itself.

Road-Map: The rest of this paper is organized as follows: The notion of
(
k
1

)
-

oblivious transfer protocols secure against defeasible adversaries is introduced
and formalized in Section 2. We provide black-box constructions for fully-
simulatable

(
k
1

)
-oblivious transfer protocols secure against static (yet malicious)

adversaries in the real/ideal world paradigm (based on the protocols that are
secure against defensible adversaries) in Section 3. We conclude our work in
Section 4.

2 Oblivious Transfer Protocols

A
(
k
1

)
- oblivious transfer functionality is formally defined as a function f with

two inputs and one output. The first input is a k-tuple message m= (m0, · · · ,
mk−1), and the second input is an index σ ∈ {0, · · · , k − 1}. The output is
the message mσ. That is, the sender S, inputs (m0, · · · ,mk−1) and receives no
output. In contrast, the receiver R, inputs σ and receives mσ. By f(m,σ), we
denote (⊥,mσ).

2.1 Security in the Presence of Defensible Adversaries

In this section we construct a
(
k
1

)
- oblivious transfer protocol that is secure

in the presence of defensible adversaries. The notion of defensible adversary is
first introduced and formalized by Ishai, Kushilevitz, Lindell and Petrank [8]
in the context of bit-transfer protocols. Informally, a defensible adversary may
arbitrarily deviate from the protocol specification. However, at the conclusion
of the protocol execution, the adversary must be able to justify or defend by its
behavior by presenting an input and a random tape such that the honest party
with this input and random tape would behave in the same way as the adversary
did. A protocol is private under defensible adversary behavior if it is private in
the presence of such adversaries.

We now extend the notion of privacy for defensible adversaries in the context
of bit-transfer protocols of [8] to the notion of privacy for defensible adversaries
in the context of

(
k
1

)
-oblivious transfer protocols. Recall that the standard pri-

vacy definition of
(
k
1

)
-oblivious transfer protocols requires that the receiver in

an oblivious transfer protocol is supposed to obtain one out of the k messages
(m0, · · · ,mk−1) in the execution. However the rest values must remain secret. If
an adversary’s behavior is malicious and cannot provide a good defense1, then
1 A defense is an explanation of an adversary’s behavior during the protocol execution.

Such an explanation consists of an input and random tape, and a defense is good

if an honest party, given that input and random tape, would have sent the same
messages as the adversary did during the protocol execution.



218 H. Zhu

no security is guaranteed. When considering defensible adversaries, the require-
ment is that as long as the adversary can provide a good defense, it can only
learn one of k values.

Definition 1. (good defense for a transcript t): Let t be the transcription of an
execution of a protocol π=(S,R) between an adversary A and an honest party X
(either X = S or X = R). Then we say that the pair (x, ρx) consists of a good de-
fense by A, if for every l it holds that sentA

l (t) = X(x, ρx, receivedA
1,··· ,l−1(t)).

Privacy in the Presence of a Defensible Sender. In an oblivious transfer
protocol, a sender is not supposed to learn anything about the receiver’s input.
This means that the sender should not be able to simultaneously present a good
defense of its behavior and make a correct guess as to the value of the receiver’s
input. We define an experiment for a protocol π and an adversary A modelled
by a polynomial size family of circuits {An}n∈N .

Experiment ExptS
π(An)

1. Choose σ ∈ {0, · · · , k − 1} uniformly at random;
2. Let ρR be a uniformly distributed random tape for R and let t= < An, R(1n,
σ, ρR) >;

3. Let < (r, ρr), τ > be the output of An(t). The pair (r, ρr) consists of An’s
defense and τ is its guess for σ;

4. Output 1 if and only if (r, ρr) is a good defense by An for τ in π, and τ =σ.

Definition 2. Let π=(S,R) be a
(
k
1

)
- oblivious transfer protocol. We say that

π is private in the presence of a defensible sender if for every polynomial size
family of circuits A={An}n∈N controlling R, for every polynomial p(·) and for
all sufficiently large n’s

Pr[ExptSπ(An) =1] < 1/k + 1/p(n)

Privacy in the Presence of a Defensible Receiver. We define an experiment
for a protocol π and an adversary A modelled by a polynomial size family of
circuits {An}n∈N .

Experiment ExptR
π (An)

1. Choose m0, · · · ,mk−1;
2. Let ρS be a uniformly distributed random tape for S and let t = < S(1n,
m0, · · · , mk−1, ρS), An >;

3. Let < (r, ρr, σ), τ > be the output of An(t). The pair (r, ρr, σ) consists of
An’s defense and τ is its guess for a message mr such that r �= σ;

4. Output 1 if and only if (r, ρr, σ) is a good defense by An for τ in π, and τ
=mr �= mσ.



Black-Box Constructions 219

Notice that by An’s defense, it should have received mσ. The challenge is there-
fore to guess the value of mr (r �= σ). If it cannot do this, then the sender’s
privacy is preserved.

Definition 3. Let π=(S,R) be a
(
k
1

)
- oblivious transfer protocol. We say that

π is private in the presence of a defensible receiver if for every polynomial size
family of circuits A={An}n∈N controlling R, for every polynomial p(·) and for
all sufficiently large n’s

Pr[ExptRπ (An) =1] < 1/k + 1/p(n)

Definition 4. Let π=(S,R) be a
(
k
1

)
- oblivious transfer protocol. We say that

π is defensible private if it is private in the presence of a defensible sender and
a defensible receiver.

2.2 Black-Box Access to Homomorphic Encryption Algorithm

We assume that the existence of public-key encryption scheme (G,E,D) that is
semantically secure which has no decryption error and has the following homo-
morphic property.

– The plain-text is taken from a finite Abelian group G determined by the pub-
lic key. Without loss of generality, throughout the paper, we simply assume
that the group G is an additive group Zp as that in [8];

– Given any public-key pk generated by the key generation algorithm G, and
arbitrary two cipher-texts ci = Epk(mi) (i = 1, 2), it is possible to efficiently
compute a valid encryption of the sum Epk(m1 +m2).

A protocol use an encryption in a black-box way means that it refers only to
the input/output behavior of the encryption scheme. For any instance of a finite
Abelian group G determined by the public key, we assume that given a triple of
group elements (x, y, z) such that z= mx+ y, it is easy for one to compute the
unique group element m. Such an assumption does not rely on the code of the
encryption/decryption algorithm.

2.3 Achieving Security against Defensible Adversaries

In this section, we provide a construction of a
(
k
1

)
- transfer protocol that is secure

in the presence of defensible adversaries.

Our construction: The sender S has k strings m0, · · · ,mk−1; the receiver R
has an index σ ∈ {0, · · · , k − 1}.
The protocol

– The sender S chooses a pair of keys (pk, sk) ← G(1n), and accesses to the
encryption algorithm in a black-box way to obtain a cipher-text ej =Epk(mj)
of the message mj . The sender S sends ej (j = 0, · · · , k − 1) and pk to the
receiver R;



220 H. Zhu

– The receiver R, randomly chooses x and y to compute c = exσE(1)y, and
sends c to S;

– The sender S sends a decryption λ of c to R;
– The receiver R computes mσ from the received message λ with the auxiliary

input strings (x, y).

Notice that if both S and R are honest, then R receives the correct output λ
is of form (mσx + y) defined over the finite Abelian group G(say Zp) which is
determined by the public key. We claim that

Theorem 1. Assume that the encryption scheme (G,E,D) is semantically se-
cure under chosen plain-text attack and has no decryption error, then the above(
k
1

)
- oblivious transfer protocol is secure in the presence of the defensible

adversaries.

Proof. We consider the following two cases:

Case 1: Suppose that S is controlled by a defensible adversary A={An}, we
allow An to run a key generation algorithm G. An is given an encryption scheme
(G,D,E) together with the secret key sk. Suppose now An receives a decryption
query of a cipher-text c of form exσE(1)y from the honest receiver R, and An

is able to guess the correct value mσ with non-negligible advantage 1/p(n),
i.e., Pr[ExptR

π (An) =1] < 1/k + 1/p(n). Notice that the event ExptR
π (An) =1

that happens with non-negligible advantage 1/p(n) means that An is able to
simultaneously present a good defense of its behavior and make a correct guess as
to the value of the receiver’s input with non-negligible advantage 1/p(n). Notice
that the probability that An can correctly guess the value σ given mσx+ y with
the probability 1/p(n). Since the decryption scheme has no decryption error and
thus the message mσ is unconditionally hiding by the random strings x, y (mσ

in essence is a encrypted using a one time encryption scheme by the honest
receiver), it follows that p(n) ≤ 1/2n.

Case 2: in case that R is controlled by the defensible adversary A={An}, we
allow An to run a key generation algorithm G. An is given an encryption scheme
(G,D,E) but not the secret key sk. Notice that An’s defense consists of (eσ,
E(1), x, y) as well asmσ. Since the underlying encryption scheme is semantically
secure under chosen plain-text attack, it follows that An is able to decrypt one
of the given k-tuple cipher-texts with 1/k + 1/p(n), where 1/p(n) is at most a
negligible amount.

3 Black-Box Constructions of Oblivious Transfer
Protocols in the Presence Malicious Adversaries

3.1 Adversarial Model

In this paper, we consider malicious adversaries who may arbitrarily deviate
from the specified protocol. We however, consider the static corruption model,



Black-Box Constructions 221

where one of the parties is adversarial while the other is honest, and this is fixed
before the execution begins.

Execution in the Real World Model. In the real world, a malicious party
may follow an arbitrary feasible strategy. Let π be a two-party protocol, and let
M=(M1,M2) be a pair of non-uniform probabilistic polynomial time machines.
We assume that such a pair is admissible meaning that for at least one i ∈ {1, 2}
we have Mi is honest. The joint execution of π under M in the real model on
inputs m=(m0, · · · ,mk−1) and σ ∈ {0, · · · , k− 1}, denoted by REALπ,M (m,σ),
is defined as the output of pair of M1 and M2 resulting from the protocol inter-
action.

Execution in the Ideal World Model. An ideal oblivious set transfer pro-
ceeds as follows:

– Inputs: The sender S obtains an input pair m=(m0, · · · ,mk−1) with |mi|
=|mj |, and the receiver R obtains an input σ ∈ {0, · · · , k − 1}.

– Send inputs to trusted party: An honest party always sends its inputs to the
trust party without any modification. A malicious party may either abort,
in which case it sends ⊥ to the trust party, or sends some other input to the
trusted party.

– If the trusted party receives ⊥ from one of the parties, then it sends ⊥ to
both parties and halts. Otherwise, upon receiving some (m′

0, · · · ,m′
k−1) from

S and σ from R, the trusted party sends m′
σ to R and halts.

– An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary function of its initial input
and the message obtained from the trusted party.

By f we denote the oblivious transfer functionality and let M =(M1,M2) be a
pair of non-uniform probabilistic expected polynomial-time machines which is
admissible. Then the joint execution of f under M in the ideal world model,
denoted by IDEALf,M (m,σ), is defined as the output pair of M1 and M2 from
the above ideal execution.

Definition 5. Let f denote the functionality of oblivious transfer protocol and
let π be a two-party protocol. Protocol π is said to be a secure oblivious transfer
protocol if for every pair of admissible non-uniform probabilistic polynomial-time
machines A=(A1, A2) for the real world model, there exists a pair of admissible
non-uniform probabilistic expected polynomial-time time machines B=(B1, B2)
for the ideal world, such that for every k-tuple message m=(m0, · · · ,mk−1) of
the same length, and for every index σ ∈ {0, · · · , k − 1}, IDEALf,B(m,σ) ≈
REALπ,M (m,σ).

3.2 Achieving Security against Malicious Adversaries

In this section we construct a
(
k
1

)
- oblivious transfer protocol that is secure

in the presence of malicious adversaries. The security achieved for malicious



222 H. Zhu

sender/receiver is according to the real/ideal world paradigm of security for
secure computation. Our construction uses black-box access to a

(
k
1

)
- oblivious

transfer protocol that is secure against defensible adversaries.

Our Construction. The sender S has k strings m0, · · · ,mk−1; the receiver R
has an index σ ∈ {0, · · · , k − 1}.

1. The sender S chooses a pair of keys (pk, sk) ← G(1n), and accesses to the
encryption algorithm in a black-box way to obtain a cipher-text ej =Epk(mj)
of the message mj . The sender S sends ej (j = 0, · · · , k − 1) and pk to the
receiver R.

2. For each ej (j = 0, · · · , k − 1), the receiver R randomly chooses t strings
{(x1,j , y1,j), · · · , (xt,j , yt,j)} and computes ci,j= e

xi,j

j E(1)yi,j . R randomly
reorders all computed {ci,j} (i=1, · · · , t and j=0, · · · , k − 1). By Mt×k, we
denote the randomized matrix of {ci,j}t×k.⎛⎜⎜⎝

z1,0, z1,1, · · · z1,k−2, z1,k−1
z2,0, z2,1, · · · z2,k−2, z2,k−1
· · · · · · · · · · · · · · ·
zt,0, zt,1, · · · zt,k−2, zt,k−1

⎞⎟⎟⎠
The receiver R sends the randomized matrix Mt×k to S.

3. S and R run a secure two-party coin tossing protocol that accesses a one-way
function in a black-box way for generating a string of length tk: r =((r1,0,
· · · , r1,k−1), · · · , (rt,0, · · · , rt,k−1)). The string r is used to define a set of
indices I ={ri,j = 0}, where i=1, · · · , t, j=0, · · · , k − 1.

4. For every (i, j) ∈ I, the receiver R provides a defense (xi,j , yi,j).
5. S checks that for every (i, j) ∈ I, the received pair (xi,j , yi,j) constitutes a

good defense by R for Mt×k. If not, then S aborts and halts. Otherwise, it
continues the next step.

6. R chooses (i, j) ∈ I such that zi,j = ci∗,σ, where ci∗,σ = e
xi∗,σ
σ E(1)yi∗,σ ,

where i∗ ∈ {1, · · · , t} and then sends zi,j to S.
7. S decrypts zi,j to mσ xi∗,σ + yi∗,σ. By λi∗,σ, we denote mσ xi∗,σ + yi∗,σ. S

then sends λi∗,σ to R.
8. R retrieves mσ from the received string λi∗,σ using the auxiliary strings

(xi∗,σ, yi∗,σ).

Security in the Presence of Malicious Sender. We present a proof that pro-
tocol described above is secure in the presence of malicious senders. We present
our analysis in the so-called hybrid model, where the honest party uses a trusted
party to compute the coin-tossing functionality for them. We now describe the
simulator Sim for A={An}:

– S1) Simulator Sim receives k messages e0, e1, · · · , ek−1 from An;
– S2) Sim generates a random matrixMt×k according to Step 2 in the protocol

and sends Mt×k to An;



Black-Box Constructions 223

– S3) Sim chooses a random string r ∈ {0, 1}tk and hands it to An, as if it is
the output of the coin-tossing functionality, as sent by the trusted party. Let
I be the index set derived from r. Sim then sends (xi′,j′ , yi′,j′) to An such
that zi,j = e

xi′,j′
j′ E(1)yi′,j′ for every (i, j) ∈ I.

– S4) The simulator Sim chooses zi,j such that (i, j) /∈ I and obtains a message
λi′,j′ such that E(λi′,j′) = zi,j = e

xi′,j′
j′ E(1)yi′,j′ from which a decryption of

ej′ can be derived.
– S5) Sim rewinds An to the beginning of the step S3), and then chooses a

new random string r̂ ∈ {0, 1}tk with associated index set Î. We stress that
r and r̂ are independent random strings. This procedure is performed until
Sim obtains every decryption of ej (i.e., mj) for j = 0, · · · , k − 1.

– S6) Sim sends {mj}k−1
j=0 to the trusted party and obtainsmσ from the trusted

party, where σ ∈ {0, · · · , k − 1}.

Since the underlying
(
k
1

)
- oblivious transfer protocol is secure against defensible

sender An, it follows that the joint output of Sim and the honest receiver R in
the ideal model is computationally indistinguishable from the joint output of An

and R in the real model.

Security in the Presence of Malicious Receiver. We present a proof that
protocol described above is secure in the presence of malicious receivers. The
intuition behind this proof is that the cut-of-choose technique forces an adver-
sarial receiver A to be provide a valid request (if cheated, it can be caught with
overwhelming probability). We now describe the simulator Sim for A={An}:

– R1) Simulator Sim runs G(1n) to generate a pair of keys (pk, sk), and then
produces k dummy encryptions e0, · · · , ek−1;

– R2) Simulator Sim is given a garbled matrix Mt×k as that produced in the
real protocol execution;

– R3) Simulator Sim chooses a random string r ∈ {0, 1}tk and hands it to
An, as if it is the output of the coin-tossing functionality, as sent by the
trusted party. Let I be the index set derived from r. Upon receiving back
pairs (xi′,j′ , yi′,j′) for (i, j) ∈ I, simulator Sim checks that they are all valid.
That is, simulator Sim checks that (i, j) ∈ I and there exists a pair (i′, j′)
such that zi,j = e

xi′,j′
j′ E(1)yi′,j′ (=ci′,j′). If not, then it aborts just like the

honest sender.
– R4) Simulator Sim rewinds An to the beginning of the previous step R3),

and chooses a new random string r̂ ∈ {0, 1}tk with associated index set Î.
We stress that r and r̂ are independent random strings. Sim then hands r̂ to
An, and sees if the receiving back pairs (xî,ĵ , yî,ĵ) are valid in the sense that
(i, j) ∈ Î and there exists a pair (̂i, ĵ) such that zi,j = e

xî,ĵ

ĵ
E(1)yî,ĵ (=cî,ĵ).

If not, then it aborts just like the honest sender.
– R5) Upon receiving a decryption request of zi,j such that (i, j) ∈ I, (i, j) /∈ Î

from An, Sim retrieves σ from the previous opening of zi,j = e
xi′,σ
σ E(1)yi′,σ .

Let T be the event such that Sim receives the decryption request for zi,j such



224 H. Zhu

that (i, j) ∈ I, (i, j) /∈ Î from An. If the event T does not happen, then it
repeats R4) until the event T occurs.

– R6) Sim sends σ to the trusted party and outputs what An does.

Since there is no output of the honest sender S, it is suffice here to show that the
output of Sim in the ideal model is computationally indistinguishable from the
output of An in the real model. In case that the event T occurs that happens
at least with probability 1/4t, the view of An in the simulation with Sim is
computationally indistinguishable from its view in a real execution with the
honest sender S. Since the underlying

(
k
1

)
- oblivious transfer protocol is secure

against defensible sender An, it follows that the joint output of Sim and the
honest sender S in the ideal model is computationally indistinguishable from
the joint output of An and S in the real model.

Combing the above results, we have the following claim immediately:

Theorem 2. There exist protocols for secure
(
k
1

)
- oblivious transfer without an

honest majority and in the presence of static malicious adversaries that rely only
on black-box access to a homomorphic encryption scheme.

By applying the well-known results of Kilian [10], we further claim that:

Corollary 1. There exist protocols for secure computation without an honest
majority and in the presence of static malicious adversaries that rely only on
black-box access to a homomorphic encryption scheme.

4 Conclusion

In this paper, black-box constructions for fully-simulatable oblivious transfer
protocols have been presented and analyzed. We have shown that our protocols
are secure against malicious adversaries in the static adversarial model in the
real/ideal world paradigm.

References

1. Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-Box Construction of a
Non-malleable Encryption Scheme from Any Semantically Secure One. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

2. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: FOCS 2000, pp.
325–335 (2000)

3. Gertner, Y., Malkin, T., Reingold, O.: Lower bounds on the efficiency of generic
cryptographic constructions. In: Proceedings of the IEEE Symposium on Founda-
tions of Computer Science, pp. 126–135 (2001)

4. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)



Black-Box Constructions 225

5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

6. Haitner, I.: Semi-honest to Malicious Oblivious Transfer - The Black-Box Way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

7. Horvitz, O., Katz, J.: Bounds on the efficiency of black-box commitment schemes.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 128–139. Springer, Heidelberg (2005)

8. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: STOC 2006, pp. 99–108 (2006)

9. Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-Way
Permutations. In: STOC 1989, pp. 44–61 (1989)

10. Kilian, J.: Founding Cryptography on Oblivious Transfer. In: STOC 1988, pp.
20–31 (1988)

11. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: FOCS 1997, pp. 364–373
(1997)

12. Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

13. Yao, A.C.-C.: Protocols for Secure Computations. In: FOCS 1982, pp. 160–164
(1982)

Appendix A

The Kushilevitz and Ostrovsky protocol [11]

– Input: the sender S has a pair of bits (s0, s1); the receiver R has a bit r;
– The receiver R chooses a pair of keys (pk, sk) by running a key generation

algorithm G of a homomorphic encryption E, computes c = Epk(m) and
sends c and pk to the sender S;

– The sender uses the homomorphic property and its knowledge of s0 and s1
to compute a random encryption c′ =Epk((1 − r)s0 + rs1) and sends c′ to
the receiver;

– R computes and and outputs sr =Dsk(c′).

Claim ([11] and [8]): Assume that the encryption scheme (G,E,D) is indistin-
guishable under the chosen plain-text attacks and has no decryption errors,
The Kushilevitz and Ostrovsky protocol is private in the presence of defensible
senders and private for random inputs in the presence of defensible receivers.



Skew Frobenius Map and Efficient Scalar
Multiplication for Pairing–Based Cryptography

Yumi Sakemi1, Yasuyuki Nogami1, Katsuyuki Okeya2, Hidehiro Kato1,
and Yoshitaka Morikawa1

1 Okayama University,
3-1-1, Tsushima-naka, Okayama, 700-8530, Japan

{sakemi,nogami,kato,morikawa}@cne.okayama-u.ac.jp
2 Hitachi, Ltd., Systems Development Laboratory,

292, Yoshida-cho, Tatsuka-ku, Yokohama, 244-0817, Japan
katsuyuki.okeya.ue@hitachi.com

Abstract. This paper considers a new skew Frobenius endomorphism
with pairing–friendly elliptic curve E(Fp) defined over prime field Fp .
Then, using the new skew Frobenius map, an efficient scalar multiplica-
tion method for pairing–friendly elliptic curve E(Fp) is shown. According
to the simulation result, a scalar multiplication by the proposed method
with multi–exponentiation technique is about 40% faster than that by
plain binary method.

1 Introduction

Pairing–based cryptographic applications such as ID–based cryptography [2] and
group signature authentication [11] have received much attention. In general,
pairing is a quite time–consuming operation [3], thus a lot of improvements
have been done. For example, twisted Ate pairing [10] and Devegili’s work
[4] substantially improved Tate and Ate pairings, respectively. When one uses
Barreto–Naehrig (BN) pairing–friendly elliptic curve whose embedding degree
is 12, Ate pairing, for example, is defined as a bilinear map G2 × G1 → GT ,
where G2 ⊂ E(Fp12), G1 ⊂ E(Fp), and GT ⊂ F∗

p12 . p denotes the characteristic.
Among scalar multiplications in G1 and G2, and an exponentiation in GT , a
scalar multiplication in G1 is carried out the fastest. Thus, pairing–based cryp-
tographic applications tend to leverage scalar multiplications in G1. When the
elliptic curve is defined over a certain extension field as G2, Frobenius endomor-
phism may be efficiently applied for accelerating scalar multiplication by which
the number of elliptic curve doublings will be decreased [9]. However, when the
definition field is a prime field as G1, few accelerating techniques have been
proposed. Of course, well–known binary, non–adjacent form (NAF), and win-
dow methods are available [3]; however, usually they can not much decrease the

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 226–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Skew Frobenius Map and Efficient Scalar Multiplication 227

number of elliptic curve doublings for scalar multiplication. For example, when
the key length of elliptic curve cryptography (ECC) is 256–bit, about 256 elliptic
curve doublings will be needed. This paper focuses on scalar multiplication on a
certain pairing–friendly curve define over prime field such as BN curve [1].

Gallant et al. [6] introduced an efficient method for scalar multiplication on
elliptic curve defined over prime field, that is denoted by E(Fp) in this paper.
Let P be a rational point in E(Fp), the method considers a certain integer λ
such that [λ]P is efficiently computable by some endomorphism. For example,
consider an elliptic curve in the form of y2 = x3+b, b ∈ Fp as BN curve is, where
p is the characteristic and satisfies 3 | (p − 1). If there exists an integer λ such
that λ2 + λ + 1 ≡ 0 mod r, it is shown that a rational point P (xp, yp) ∈ E(Fp)
satisfies [λ]P = (εxp, yp) [6], where ε is a primitive third root of unity. In this
case, ε belongs to F∗

p . If such an efficiently computable endomorphism exists,
λ–adic representation of scalar s can accelerate scalar multiplication [s]P . This
paper extends the idea of Gallant et al. method (GLV method) [6] for pairing–
friendly elliptic curves such as BN curve because it is shown that BN curve, for
example, has such an efficiently computable endomorphism. Then, this paper
shows that a more efficient scalar decomposition is given.

As a kind of endomorphisms, skew Frobenius endomorphism is known [9].
Conventional skew Frobenius map considers elliptic curveE/Fp and its quadratic
twisted curve E′/Fq as y2 = x3 + ax+ b, a, b ∈ Fp and y2 = x3 + av−2x+ bv−3

with quadratic non residue v ∈ Fq , respectively, where q is a power of p. Then,
based on the computable isomorphic map between E′(Fq2) and E(Fq2), skew
Frobenius map φ̂(Q′) of rational point Q′ in E′(Fq ) is given by

φ̂ :

{
E′(Fq) → E′(Fq ),

(x, y) �→ (xpvp−1, ypv3(p−1)/2).
(1)

Then, since Q′ satisfies (φ̂2 − [t]φ̂ + [p])Q′ = O, some of scalar multiplications
in subfield–twisted curve E′(Fq) will be more efficiently carried out with φ̂–adic
expansion of the scalar. Galbraith et al. [5] have shown an efficient scalar multi-
plication in such a subfield–twisted curve with the skew Frobenius endomorphism
and GLV method. Note that the conventional skew Frobenius endomorphism is
available for a certain twisted elliptic curve. In addition, the above relation is
usually efficient when the scalar is larger than the characteristic. The idea shown
in this paper considers the isomorphism inversely.

The main proposal of this paper is an efficient scalar multiplication on pairing–
friendly elliptic curve E(Fp) defined over prime field Fp such as BN curve. First,
let k and d be embedding degree and twist degree, respectively, this paper
considers a new skew Frobenius endomorphism φ̃k/d : E(Fp) → E(Fp). Let
the order r of E(Fp) be a prime, it is well–known that a group of the same
order r exists in subfield–twisted elliptic curve E′(Fpk/d) and Devegili et al. [4]



228 Y. Sakemi et al.

accelerated Ate pairing with BN curve by using the isomorphic map between
E′(Fp2) and E(Fp12), where the embedding and twist degrees of BN curve are
12 and 6, respectively [1]. On the other hand, the new skew Frobenius en-
domorphism φ̃k/d considers the following procedure: 1) map P ∈ E(Fp) to
P ′ ∈ E′(Fpk), 2) consider its Frobenius map φk/d(P ′) with respect to Fpk/d ,
3) then inversely map φk/d(P ′) ∈ E′(Fpk) to the corresponding rational point in
E(Fp).

Next, using the new skew Frobenius map φ̃k/d, this paper accelerates scalar
multiplication in E(Fp). For example, in the case of BN curve, k/d = 2 and it
is shown that the following relation holds.

[6χ2 − 4χ+ 1]P = [(−2χ+ 1)p2]P = [−2χ+ 1]φ̃2(P ), (2)

where χ is an integer by which characteristic p of BN curve is given as

p = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1. (3)

In this paper, it is shown that Eq.(2) gives a more efficient scalar decomposition
than using GLV method. After that, this paper shows a simulation result. It
shows that the proposed method with the new skew Frobenius endomorphism
accelerates scalar multiplication on pairing–friendly elliptic curve. In detail, the
proposed method achieves about 40% reduction compared to using plain binary
method. Thus, it is shown that pairing–friendly elliptic curves also have some
good potential for scalar multiplications in E(Fp). Note that well–known window
and NAF methods can be additionally applied for the proposed method.

Throughout this paper, p and k denote the characteristic and embedding
degree, respectively. Fpk denotes k-th extension field over Fp and F∗

pk denotes
the multiplicative group in Fpk . X | Y and X � Y mean that X divides and does
not divide Y , respectively.

2 Fundamentals

This section briefly reviews elliptic curve, twist technique, skew Frobenius map,
Ate pairing, and GLV scalar multiplication.

2.1 Elliptic Curve

Let Fp be prime field and E be an elliptic curve over Fp defined as

E : y2 = x3 + ax+ b, a, b ∈ Fp . (4)

E(Fp) that is the set of rational points on the curve, including the infinity point
O, forms an additive Abelien group. Let #E(Fp) be its order, consider a large



Skew Frobenius Map and Efficient Scalar Multiplication 229

prime r that divides #E(Fp). The smallest positive integer k such that r divides
pk − 1 is especially called embedding degree. One can consider pairings such as
Tate and Ate pairings by using E(Fpk). In general, #E(Fp) is given as

#E(Fp) = p+ 1 − t, (5)

where t is the Frobenius trace of E(Fp).

2.2 Twist Technique

When embedding degree k is equal to 2e, where e is a positive integer, from
Eq.(4) the following quadratic–twisted elliptic curve E′ is given.

E′ : y2 = x3 + av−2x+ bv−3, a, b ∈ Fp , (6)

where v is a quadratic non residue in Fpe . Then, between E′(Fpe) and E(Fp2e),
the following isomorphism is given.

ψ2 :

{
E′(Fpe) → E(Fp2e),

(x, y) �→ (xv, yv3/2).
(7)

In this case, E′ is called quadratic–twisted curve.
In the same, when embedding degree k satisfies the following conditions, the

twisted curves can be respectively considered.

– k = 3e (cubic twist)

E : y2 = x3 + b, b ∈ Fp , (8a)

E′ : y2 = x3 + bv−2, (8b)

where v is a cubic non residue in Fpe and 3 | (p− 1).

ψ3 :

{
E′(Fpe) → E(Fp3e),

(x, y) �→ (xv2/3, yv).
(8c)

– k = 4e (quatic twist)

E : y2 = x3 + ax, b ∈ Fp , (9a)

E′ : y2 = x3 + av−1x, (9b)

where v is a quadratic non residue in Fpe and 4 | (p− 1).

ψ4 :

{
E′(Fpe) → E(Fp4e),

(x, y) �→ (xv1/2, yv3/4).
(9c)



230 Y. Sakemi et al.

– k = 6e (sextic twist), Barreto–Naehrig (BN) curve [1] has this form.

E : y2 = x3 + b, b ∈ Fp , (10a)

E′ : y2 = x3 + bv−1, (10b)

where v is a quadratic and cubic non residue in Fpe and 3 | (p− 1).

ψ6 :

{
E′(Fpe) → E(Fp6e),

(x, y) �→ (xv1/3, yv1/2).
(10c)

When one uses Barreto–Naehrig curve that is a class of pairing–friendly curve,
one can apply quadratic/cubic/sextic twist because its embedding degree is 12.
Of course, sextic twist is the most efficient for pairing calculation.

Eqs.(7), (8c), (9c), and (10c) are summarized as

ψd :

{
E′(Fpe) → E(Fpde),

(x, y) �→ (xv2/d, yv3/d).
(11)

Thus, when twist degree d is even, x–coordinate xv2/d belongs to proper subfield
Fpk/2 because of v2/d ∈ Fpk/2 . In addition, when d = 2 or 4, the coefficient of x
of the twisted curve E′ can be written as av−4/d.

2.3 Conventional Skew Frobenius Map [9]

Consider subfield–twisted curve E′(Fpe) as introduced in Sec.2.2. The conven-
tional skew Frobenius map φ̂ is defined as follows [9].

φ̂ :

{
E′(Fpe) → E′(Fpe),

(x, y) �→ (xpv2(p−1)/d, ypv3(p−1)/d),
(12)

where x and y are x–coordinate and y–coordinate of rational point, respectively.
Let [s] be scalar multiplication for rational point with scalar s as

[s]P =
s−1∑
i=0

P. (13)

Then, for rational point Q′ ∈ E′(Fpe), the following relation holds.(
φ̂2 − [t]φ̂+ [p]

)
Q′ = O. (14)

This relation is sometimes useful for scalar multiplication in E′(Fpe). Galbraith
et al. [5] have shown an efficient scalar multiplication for subfield–twisted elliptic
curve E′(Fpe) with the conventional skew Frobenius endomorphism φ̂.



Skew Frobenius Map and Efficient Scalar Multiplication 231

2.4 Ate Pairing and Twisted Curve

Let φ be Frobenius endomorphism over Fp , ı.e.,

φ :

{
E(Fpk) → E(Fpk),

(x, y) �→ (xp, yp).
(15)

Then, let G1 and G2 be

G1 = E[r] ∩Ker(φ − [1]), (16a)

G2 = E[r] ∩Ker(φ − [p]), (16b)

and let P ∈ G1 and Q ∈ G2, Ate pairing α(Q,P ) is defined as

α :

{
G2 × G1 → F∗

pk/(F∗
pk)r,

(P,Q) �→ α(Q,P ),
(17)

where E[r] denotes a subgroup of rational points of order r in E(Fpk).
As introduced in Sec.2.2, we have subfield–twisted curve E′(Fpe), where k =

de and d is the twist degree. Devegili et al. improved Ate pairing so as to use
rational points Q′ ∈ E′(Fpe) with Q = ψd(Q′) and Q′ = ψ−1

d (Q) [4]. Fig.1 shows
the image of G2 and G′

2. Corresponding to this relation, this paper proposes a
new skew Frobenius endomorphism from another viewpoint. It is understood
that the following relation holds for Q′ ∈ G′

2 [4].(
φ̂− [p]

)
Q′ = O and thus φ̂(Q′) = [p]Q′. (18)

Because, inversely for Q ∈ G2, Ate pairing is explicitly based on

(φ− [p])Q = O and thus φ(Q) = [p]Q. (19)

2.5 GLV Scalar Multiplication [6]

Frobenius and the skew Frobenius maps cannot be efficiently applied for a ra-
tional point in prime field elliptic curve E(Fp). For this problem, Gallant et al.
[6] have introduced an efficient scalar multiplication method for E(Fp) so–called
GLV method. It needs an efficiently computable endomorphism. This section
extends the idea for pairing–friendly elliptic curves, especially Barreto–Naehrig
(BN) curve in this paper. Consider integer λ such that λ2 + λ + 1 = 0 mod r,
where r = p+ 1− t. In general, the ratio that x2 + x+ 1 is irreducible modr is
1/2. However, in the case of BN curve, since the embedding degree of BN curve
is 12, it always has two solutions as

λ = −p2, p4. (20)



232 Y. Sakemi et al.

(Fpk)

(Fpe)

(Fp)(Fp)
G1

(Fpe)

(Fpk)

Q′ ∈ G′
2

Q ∈ G2E

E′

d–th twist

ψd

Fig. 1. Relation between G2 and G′
2

Note that characteristic p and order r of BN curve are respectively given by

p(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (21a)

r(χ) = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1, (21b)

then −p2 and p4 are respectively given by

− p2 ≡ −36χ3 + 18χ2 − 6χ+ 1 mod r, (22a)

p4 ≡ 36χ3 − 18χ2 + 6χ2 − 2 mod r, (22b)

where χ is a certain integer. Thus, since λ given above is smaller than p, scalar
multiplication [s]P, P ∈ E(Fp) is reduced to

[s]P = ([s1][λ] + [s2])P, |s1| , |s2| < λ. (23)

In addition, [λ]P of P (xp, yp) is simply calculated as

[λ]P = (εxp, yp), (24)

where ε3 = 1. Since 6 | (p − 1) for BN curve, ε ∈ F∗
p . Then, scalar multiplica-

tion [s]P will be efficiently calculated with multi–exponentiation technique [3].
Since log2 λ ≈ (3/4) log2 r from Eq.(21b) and Eqs.(22), the improvement for
the number of elliptic curve doublings is about 25%. The relation Eq.(22a) is
also used for twisted Ate pairing [10]. This paper shows a more efficient scalar
decomposition with a new skew Frobenius map.



Skew Frobenius Map and Efficient Scalar Multiplication 233

Galbraith et al. have also referred to GLV method [5] in addition to the con-
ventional skew Frobenius map φ̂. Then, it is shown that a scalar multiplication
in E′(Fpe) is efficiently calculated. Their proposal is not for the improvement of
a scalar multiplication in E(Fp). It is just the target of this paper.

3 Main Proposal

This section first shows a new skew Frobenius endomorphism for elliptic curve
defined over prime field Fp . Then, based on it, an efficient scalar multiplication
method for pairing–friendly elliptic curve E is proposed. In detail, the proposed
method accelerates a scalar multiplication in E(Fp). In this section, for instance,
BN curve is especially dealt with as a pairing–friendly curve.

3.1 Twisted Rational Point

As introduced in Sec.2.2 and Sec.2.4, subfield–twisted curve E′(Fpe) is given,
where k = de and d is the twist degree. This section considers twisted rational
point P ′ = ψ−1

d (P ), P ∈ G1 ⊂ E(Fp), where P ′ belongs to G′
1 ⊂ E′(Fpk). Fig.2

shows a relation between G1 and G′
1. In what follows, for instance, let the order

r = p + 1 − t of E(Fp) be a prime number. Then, the order of subgroup G′
1

in E′(Fpk) that consists of twisted rational points such as P ′ is r. This paper
considers a new skew Frobenius endomorphism from another viewpoint.

3.2 New Skew Frobenius Map

For P ∈ E(Fp) ⊂ E(Fpk), consider P ′ = ψ−1
d (P ) ∈ G′

1 ⊂ E′(Fpk). Note that
the coefficients of the defining equation of subfield–twisted curve E′ are in Fpe

as shown in Eq.(6), in the same of Eq.(18), P ′ satisfies

(φe − [pe])P ′ = O, (25)

where let P ′ be (xP ′ , yP ′),

φe(P ′) = (xpe

P ′ , y
pe

P ′). (26)

Therefore, in the same of Eq.(12), for ∀P (xP , yP ) ∈ E(Fp), a new skew Frobenius
endomorphism φ̃e is considered as

φ̃e :

{
E(Fp) → E(Fp),

(x, y) �→ (xp/v2(p
e−1)/d, yp/v3(p

e−1)/d),
(27)

Then, the following relation holds.(
φ̃e − [pe]

)
P = O and thus φ̃e(P ) = [pe]P. (28)



234 Y. Sakemi et al.

(Fpk)

(Fpe)

(Fp)(Fp)
P ∈ G1

(Fpe)

(Fpk)

Q′ ∈ G′
2

Q ∈ G2E

E′
P ′ ∈ G′

1

d–th twist

ψd

ψ−1
d

Fig. 2. Twisted rational points in G′
1

When d = 6 and e = 2 as BN curve, φ̃2
2(P ) = [p4]P and φ̃4

2(P ) = [p8]P = [−p2]P .
Thus, Eq.(24) can be also obtained. In other words, Eq.(24) is one of the cases of
the new skew Frobenius endomorphism. It is implicitly understood that Eq.(28)
is a case of computable endomorphisms discussed in Sect. VI of [8].

3.3 A Relation among χ, p, and φ̃e

This section derives a relation among χ, p, and φ̃e that leads to an efficient scalar
multiplication in E(Fp). Note the parameter settings of BN curve given by

p(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (29a)

r(χ) = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1 = p(χ) + 1 − t(χ), (29b)

t(χ) = 6χ2 + 1. (29c)

P ∈ E(Fp) satisfies
[r]P = [p+ 1 − t]P = O. (29d)

As shown in App.A and from Eq.(28), we have

[6χ2 − 4χ+ 1]P = [(−2χ+ 1)p2]P = [−2χ+ 1]φ̃2(P ). (30)

The most important point is that, as shown in Eq.(30), every exponent of powers
of p needs to be a multiple of e. Then, it is easily found that Eq.(30) makes scalar
multiplications in E(Fp) efficient. As shown below, Eq.(30) gives a more efficient
scalar decomposition than using GLV method.



Skew Frobenius Map and Efficient Scalar Multiplication 235

3.4 Scalar Multiplication in E(Fp) with φ̃e

Consider scalar multiplication [s]P , P ∈ E(Fp), where scalar s is smaller than r
that is given by Eq.(21b). Let ν be 6χ2 − 4χ+ 1, consider ν–adic representation
of scalar s in the following form.

s = s1ν + s2, s2 < ν. (31a)

In the case that r > ν2, s1 may be larger than ν. For example, when χ is a
positive integer, according to Eq.(21b), r < ν2. Note that ν is not a root of
x2 + x+ 1 mod r. Substituting Eq.(30),

s ≡ (−2χ+ 1)s1p2 + s2 mod r. (31b)

(−2χ+ 1)s1 is mostly larger than ν, therefore using Eq.(30) once more again,

s ≡ (s3ν + s4) p2 + s2 ≡ s5p4 + s4p2 + s2 mod r, (31c)

where s4 and s2 are smaller than ν. s5 may not be smaller than ν but even in
such a case it is not so large. In addition, since p4 ≡ p2 − 1 mod r in this case,

s ≡ s5(p2 − 1) + s4p2 + s2 ≡ (s4 + s5)p2 + (s2 − s5) mod r. (31d)

Let A = s4 + s5 and B = s2 − s5, [s]P is calculated by

[s]P =
(
[A]φ̃e + [B]

)
P. (32)

Thus, the number of doublings for a scalar multiplication is reduced to about
1/2 because log2 |A| and log2 |B| are at most about (1/2) log2 r. According to
Sec.2.5, the proposed method is more efficient than GLV method in this case.

3.5 Other Pairing–Friendly Curves

The proposed method is available not only for BN curve but also for a lot of
other pairing–friendly curves. For example, when k = 18, characteristic p, order
r and Frobenius trace t are given by using an integer variable χ as

p(χ) = (χ8 + 5χ7 + 7χ6 + 37χ5 + 188χ4

+259χ3 + 343χ2 + 1763χ + 2401)/21, (33a)

r(χ) = (χ6 + 37χ3 + 343)/343, (33b)

t(χ) = (χ4 + 16χ + 7)/7. (33c)

Then, note that e = 3, we have

−p3 ≡ χ3 + 18 mod r, thus [χ3 + 18]P = −φ̃e(P ). (34)

In this case, −p3 is one of the solution of λ2 + λ + 1 ≡ 0 mod r. Thus, the
improvement by the proposed method is equivalent to that of GLV.



236 Y. Sakemi et al.

4 Simulation

This section especially considers BN curve with the parameter settings as

χ = 262 + 235 + 224, (35a)

E : y2 = x3 + 10. (35b)

In addition, this simulation used projective coordinates for elliptic curve addi-
tion and doubling in E(Fp). The proposed scalar multiplication method was
simulated on the computational environment shown in Table 1.

Table 1. Computational environment

CPU Pentium(R)4∗ 3.0GHz
Cash size 2048KB

OS Linux(R)† 2.6.21
Language C
Compiler gcc 4.2.1
Library GNU MP 4.2.2 [7]

∗Pentium(R) is a registered trademark of Intel Corporation. †Linux(R) is the
registered trademark of Linus Torvalds in the U.S. and other countries.

The proposed scalar multiplication method for BN curve, for example, is con-
cluded as Algorithm 1 in which let smaller scalarsA andB be positive numbers
for simplicity. Multi–exponentiation technique [3] was applied in this simulation.
Table 2 shows average timings simulated with a lot of random scalars of 254–bit.

As shown in Table 2, the new skew Frobenius map and the proposed scalar
multiplication method with multi–exponentiation technique efficiently work. In
detail, in the case of BN curve, a scalar multiplication by the proposed method
with multi–exponentiation technique is about 40% and 30% faster than those
by plain binary and GLV methods, respectively. Note that well–known window
and NAF methods can be additionally applied for the proposed method [3].

Table 2. Timing of a scalar multiplication with 254–bit prime order BN curve

[unit:ms]

plain binary method 3.96
GLV method with multi–exponentiation technique [3] 3.26

proposed method with multi–exponentiation technique [3] 2.42

* Average timing with random 254–bit scalars.



Skew Frobenius Map and Efficient Scalar Multiplication 237

Algorithm 1. Proposed scalar multiplication for BN curve

Input : s ∈ Zr, P ∈ E(Fp)
Output : R = [s]P

Procedure :
1. determine scalars A,B such as Eq.(32)
2. R← O, C ← φ̃2(P ), D ← φ̃2(P ) + P
3. for max ("log2A#, "log2B#) ≥ i ≥ 0,
4. if Ai = 1 & Bi = 1
5. R← R+D
6. else if Ai = 1 & Bi = 0
7. R← R+ C
8. else if Ai = 0 & Bi = 1
9. R← R+ P

10. R← R+R
11. i← i− 1
12. end for
13. output R

Remark: Ai and Bi denote i–th bit of A and B, respectively.

5 Conclusion

This paper has considered a new skew Frobenius endomorphism with pairing–
friendly elliptic curve E(Fp) defined over prime field Fp . Then, using the new
skew Frobenius map, an efficient scalar multiplication method for a pairing–
friendly elliptic curve E(Fp) was shown. According to the simulation result, a
scalar multiplication by the proposed method with multi–exponentiation tech-
nique was about 40% faster than that by the plain binary method.

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing–Friendly. Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

3. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
In: Discrete Mathematics and Its Applications. Chapman & Hall CRC, Boca Raton
(2005)

4. Devegili, A.J., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)



238 Y. Sakemi et al.

5. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptog-
raphy on general curves, IACR, ePrint, http://eprint.iacr.org/2008/194.pdf

6. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

7. GNU MP, http://gmplib.org/
8. Hess, F., Smart, N., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans.

Information Theory, 4595–4602 (2006)
9. Iijima, T., Matsuo, K., Chao, J., Tsuji, S.: Construction of Frobenius maps of

twists elliptic curves and its application to elliptic scalar multiplication. In: Proc.
of SCIS 2002, IEICE, Japan, pp. 699–702 (2002),
http://lab.iisec.ac.jp/∼matsuo lab/pub/pdf/10b-3 1263.pdf

10. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised Versions of the Ate
and Twisted Ate Pairings. In: Galbraith, S. (ed.) Cryptography and Coding 2007.
LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)

11. Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes
with Backward Unlinkability from Bilinear Maps. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

A Proof of Eq.(30)

The important point is that, as shown in Eq.(30), every exponent of powers of
p needs to be a multiple of e. In order to obtain such a relation, consider the
following procedure. First, the following relation holds.

36χ4 − 36χ3 + 18χ2 − 6χ+ 1 ≡ 0 mod r. (36)

From p ≡ t− 1 mod r,

p2 − 6χp+ 3p− 6χ+ 1 ≡ 0 mod r

(−6χ+ 3)p ≡ −p2 + 6χ− 1 mod r. (37)

Squaring both sides of Eq.(37) leads to

(6χ− 3)2p2 ≡ (p2 − 6χ+ 1)2 mod r

36χ2p2 − 36χp2 + 9p2 ≡ p4 − 12χp2 + 2p2 + 36χ2 − 12χ+ 1 mod r. (38)

From p4 + 1 ≡ p2 mod r,

36χ2p2 − 36χp2 + 9p2 ≡ −12χp2 + 3p2 + 36χ2 − 12χ mod r,

36χ2(p2 − 1) ≡ (24χ− 6)p2 − 12χ mod r,

6χ2(p2 − 1) ≡ (4χ− 1)p2 − 2χ mod r. (39)

Multiplying Eq.(39) by (p2 − 1)−1,

6χ2 ≡ −(4χ− 1)p4 + 2χp2

≡ −(4χ− 1)(p2 − 1) + 2χp2 mod r, (40)

http://eprint.iacr.org/2008/194.pdf
http://gmplib.org/
http://lab.iisec.ac.jp/~matsuo_lab/pub/pdf/10b-3_1263.pdf


Skew Frobenius Map and Efficient Scalar Multiplication 239

where using p4 − p2 + 1 ≡ 0 mod r and based on gcd(p4 − p2 + 1, p2 − 1) = 1,
(p2 − 1)−1 is given as

p4 − p2 + 1 ≡ 0 mod r,

−p2(p2 − 1) ≡ 1 mod r,

(p2 − 1)−1 ≡ −p2 mod r. (41)

Finally, the following relation is obtained.

6χ2 − 4χ+ 1 ≡ (−2χ+ 1)p2 mod r. (42)



Cryptanalysis of MV3 Stream Cipher

Mohammad Ali Orumiehchi1, S. Fahimeh Mohebbipoor1,
and Hossein Ghodosi2

1 Zaeim Electronic Ind. R&D Department
No. 21, Nilo St., Brazil St., Vanak Sq., Tehran, Iran

{orumiehchi,mohebbipoor}@zaeim.co.ir
2 School of Mathematics, Physics, and Information Technology,

James Cook University, Townsville, Qld 4811, Australia
hossein.ghodosi@jcu.edu.au

Abstract. MV3 is a word-based stream cipher, which was presented at
the CT-RSA 2007 and SASC 2007 Conferences. Although it supports
various key sizes of up to 8192 bits, the security claim of MV3 is that no
attack faster than the exhaustive key search can be mounted for keys of
length up to 256 bits.

This paper provides a distinguishing attack on the MV3 stream cipher.
We will show that the key stream generated in MV3 is distinguishable
from random sequences after observing approximately 262.93 bits. That
is, in the MV3 cipher with keys of length larger than 63 bits, it is possible
to design a key search attack faster than the exhaustive search.

Keywords: Stream Ciphers, Cryptanalysis, Distinguishing Attack, MV3
Algorithm.

1 Introduction

Stream ciphers play an important role in practical cryptography; in particular,
for encrypting long streams of data. In stream ciphers, the same key stream
cannot be used to encrypt two different messages. To overcome this issue, stream
ciphers are equipped with a key initialization algorithm that takes an Initial
Vector (IV) and a relatively short key string as inputs. The algorithm produces
an arbitrarily long key stream. Note that the key string is a long term key and
must be kept secure, however, there is no security requirement for the initial
vector, and a fresh IV should be chosen when encrypting a new message.

In 2007, Keller et al. [3,4] presented a word based stream cipher, called the
MV3. Their aim in devising the MV3 cipher was to achieve efficiency by adapting
byte-based stream ciphers, such as RC4, into a word based scenario. Although
the MV3 cipher supports various key sizes of up to 8192 bits, the security claim
is that no attack faster than the exhaustive key search can be mounted for keys
of length up to 256 bits.

In this paper, we will show that the MV3 stream cipher is subject to a dis-
tinguishing attack that exploits the correlation between the two least significant

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 240–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Cryptanalysis of MV3 Stream Cipher 241

output bits. In Section 2, we will provide a brief description of the MV3 cipher.
In section 3, we will show how our distinguishing attack breaches the security
claimed in MV3. We will summarise and conclude in Section 4.

2 A Brief Description of the MV3 Cipher

The main components of MV3 cipher are three vectors A,B, and C of length 32
double words each1, and a table T that consists of 256 double words. In addition,
there are publicly known indices i (0 ≤ i ≤ 31) and u (0 ≤ u ≤ 255), and secret
indices j, c, and x, where x, c are double words, and j is an unsigned byte. An
overview of the MV3 system is provided below.

2.1 Key Initialization

The key initialization algorithm has two phases. In the first phase, three vectors
A,B,C, and table T are initialized with unsigned integer 0xEF . The algorithm
accepts the long term key stringK of length keylength, which can be any multiple
of 32 less than or equal to 8192 (the recommended size is at least 96). This phase,
using the key string K, updates the entries of table T . In the second phase of
the key initialization algorithm, the initial vector (IV) is used for updating the
entries of table T . Since the long term key K is fixed, for every encryption,
a fresh IV is chosen, and thus, only the second phase of the key initialization
algorithm is performed. A description of the key initialization algorithm is not
directly relevant to our analysis, thus it has been omitted.

2.2 Internal State

The internal state of the MV3 cipher is constantly updated via pseudo-random
walks. To assure the randomness of the walk, designers of the MV3 cipher have
considered the following problems:

Problem 1 – Graph Design: How to design graphs to ensure that their ran-
dom walks are suitable for stream ciphers that work on arbitrary word sizes.

Problem 2 – Extraction: How to extract bits to output from the nodes visited
by the walk.

Problem 3 – Sequencing: How to sequence the nodes visited by the walk so
as to diminish any attacks that use relationships between successive outputs.

Solutions to these problems are reflected in the main loop of the MV3 cipher,
shown in Figure 1.

Where (w >� n) denote the 32-bit double word w, is right-rotated by n bits,
while ∨ and ⊕ denote the OR and XOR operations respectively. Also x · c and
c2 are 32-bit modular multiplications and a modular square respectively.
1 A double word is an unsigned 32-bit integer. Note that in a main-frame computer,

a 32-bit is a single-word boundary, while a double word consists of 64 bits.



242 M.A. Orumiehchi, S.F. Mohebbipoor, and H. Ghodosi

1. Input: length len
2. Output: stream of length len
3. repeat len/32 times
4. for i = 0 to 31
5. j ← j + (B[i] mod 256)
6. x ← x + T [j]
7. C[i] ← (x >� 8)
8. output (x · c) ⊕ A[9i + 5] ⊕ (B[7i + 18] >� 16)
9. end for

10. u ← u + 1
11. T [u] ← T [u] + (T [j] >� 13)
12. c ← c + (A[0] >� 16)
13. c ← c ∨ 1
14. c ← c2 (can be replaced by c ← c3)
15. A ← B, B ← C
16. end repeat

Fig. 1. The main loop of the MV3 Cipher

2.3 Security Discussion

In [3,4], the authors considered the design rationale of their scheme in order
to demonstrate the mechanism that provides the expected level of security.
It is worth mentioning that they were aware that statement 13 of their algo-
rithm (i.e. c ← c ∨ 1) provides the least significant bit (LSB) of the index c to
the attacker, who may use it for a distinguishing attack. Their justification for
the necessity of having this operation is that, in the absence of this statement, the
attacker (with probability 2−16) can exploit cases where c = 0 (due to statement
14, in Figure 1).

3 Cryptanalysis of the MV3 Cipher

Stream ciphers are an example of computationally secure cryptosystems. Unlike
provably secure cryptographic systems (e.g. the ElGamal [2] cryptosystem), in
which the security of a cryptosystem is equivalent to solving an intractable prob-
lem, there is no precise criteria to measure the security of a stream cipher. Note
that the designer of a computationally secure system may provide some evidence
(in the form of attacks) in order to support their claim of security, but the fact
remains that they are not aware of any attack that can breach the security of
their system.

We will now show that the MV3 cipher is subject to a distinguishing attack.
The attack utilizes statement 13 (i.e. c ← c ∨ 1) in the main loop of MV3
algorithm . As has been predicted by the designers of MV3 cipher, this statement
provides the least significant bit (LSB) of the index c, and can be used for
applying a distinguishing attack.



Cryptanalysis of MV3 Stream Cipher 243

3.1 Preliminaries

Let Pr(X = Y ) denote the probability of having equal values for two variables
X and Y , and [w]0 denote the LSB of a double word w. Also let w(i) denote the
ith bit of the double word w.

Theorem 1. In the main loop of the MV3 algorithm, for every 32 steps,

Pr(T [i] = T [j]) = 2−8.

where i and j are the random indices between 0 and 255.

Proof. Since table T has only 256 entries, for any random values of indices i and
j we have

Pr(T [i] = T [j]) = Pr(i = j) = 2−8.

Note that for randomly chosen double words w1 and w2, from all possible double
words, we have Pr(w1 = w2) = 2−32 (this does not apply to table T with 256
entries). According to the above theorem, the LSB of x is biased. This is because,

[x · c]0 ⊕ [(x+ T [j] + T [j]) · c]0 = 0.

That is, there exists some linear approximation relations in the output of the
main loop.

Theorem 2. The three vectors A,B,C have the same statistical properties.

Proof. Obvious, due to statement number 15 of the main loop (see Figure 1).

Theorem 3. [1] Given n 32-bit variables x1, x2, . . . , xn and a 32-bit variable k,
the following linear approximation

Γi(x1 + k)⊕ Γi(x2 + k) ⊕ . . .⊕ Γi(x− n+ k) = Γi(x1 ⊕ x2 ⊕ . . .⊕ xn)

holds with the probability of n+2
2(n+1) for i� 0, where Γi denotes a linear masking

vector over GF (2) which has ‘1’ only on bit positions i and i+ 1. Then Γi · x =
xi ⊕ xi+1, where ‘·’ denotes the standard inner product.

Proof. See Appendix B.

3.2 A Distinguishing Attack on MV3

Our distinguishing attack explores the correlation between the two least signif-
icant bits of x, A[.], and (B[.] >� 16) in different times. Our attempt is to find
the best bias for relation

Outputi ⊕Outputi+1 ⊕Outputi1 ⊕Outputi1+1 = 0 (1)



244 M.A. Orumiehchi, S.F. Mohebbipoor, and H. Ghodosi

First, we consider xt, A[.], and B[.] in four different times as the following
relations:

Outputi = xi · c⊕A[j]⊕B[k] (2)
Outputi+1 = xi+1 · c⊕A[j′] ⊕B[k′]
Outputi1 = xi1 · c⊕A[j1]⊕B[k1]

Outputi1+1 = xi1+1 · c⊕A[j′1]⊕B[k′1]

where 0 ≤ i, i1, j, j1, j′, j′1, k, k1, k′, k′1 ≤ 31.
We searched all possible values for i and i1 in the set of relation (2), such that

|j − j1|, |k − k1|, |j′ − j′1|, and |k′ − k′1| are minimum. Our observation was that
the best case is:

|j − j1| = |k − k1| = |j′ − j′1| = |k′ − k′1| = 2

On the other hand, the value xt is defined as follows:

xt = xt (3)
xt+1 = (xt + T [j])
xt+2 = (xt + T [j] + T [k])

Const1 = T [j] + T [k]

Note that the set of relations in (3) is independent from j and k, since we do
not consider any conditions on j and k. Moreover, the value xτ (τ �= t) is also
considered.

xτ = xτ (4)
xτ+1 = (xτ + T [o])
xτ+2 = (xτ + T [o] + T [p])

Const2 = T [o] + T [p]

However,

Pr[Const1 = Const2] =
2(

256
2

) ≈ 2−13.99

which is far away from 2−32 for two 32-bit random sequences. Therefore, a biased
relation can be considered as:

We can exploit this relation for two least significant bits, using Theorem 3:

Pr([xt · c]0,1 ⊕ [(xt + Const1) · c]0,1 ⊕ [xτ · c]0,1 ⊕ (5)

[(xτ + Const2) · c]0,1 = 0) ≈ 1
2
(1 + 0.66× 2−13.99)



Cryptanalysis of MV3 Stream Cipher 245

Table 1. All useful indices of xt, A[.] and B[.]

Number of xt A[.] B[.]
Relations i i1 j j1 k k1

1 0 14 5 3 18 20
2 0 18 5 7 18 16
3 1 15 14 12 25 27
4 3 21 0 2 7 5
5 4 18 9 7 14 16
6 4 22 9 11 14 12
7 5 19 18 20 21 23
8 5 23 18 20 21 19
9 6 20 27 25 28 30
10 6 24 27 29 28 26
11 7 21 4 2 3 5
12 7 25 4 6 3 1
13 8 22 13 11 10 12
14 8 26 13 15 10 8
15 9 23 22 20 17 19
16 11 29 8 10 31 29
17 12 26 17 15 6 8
18 12 30 17 19 6 4
19 13 27 26 24 13 15
20 14 0 3 5 20 18
21 14 28 3 1 20 22
22 15 1 12 14 27 25
23 15 29 12 10 27 29
24 16 30 21 19 2 4

The relation (5) determines the correlation between xt ·c, (xt +Const1) ·c, xτ ·c,
and (xτ + Const2) · c as t and τ are times, which are presented in Table 1.

Now, a total biased relation can be written as:

([xi · c] ⊕ [(xi + Const1) · c] ⊕ [xi1 · c] ⊕ [(xi1 + Const2) · c])r,r+1 ⊕ (6)
([Aj ] ⊕ [Aj + AConst1]⊕ [Aj1 ]⊕ [Aj1 + AConst2])r+7,r+8 ⊕
([Bk]⊕ [Bk + BConst1]⊕ [Bk1 ] ⊕ [Bk1 + BConst2])r+23,r+24 = 0

with probability

1
2

(
1 + 22 × (

2
3
)3 × 2−8 × (2−13.99)2

)
≈ 1

2
+ 2−36.73,

where [Ai]j,j+1 and [Bi]j,j+1 are the jth and j + 1th bits of the ith element
of arrays A and B, respectively. AConst1, AConst2, BConst1, and BConst2 are
constant values (as defined in relations 3 and 4). Indices i and i1 are chosen from
rows in Table 1, and 0 ≤ r ≤ 30.



246 M.A. Orumiehchi, S.F. Mohebbipoor, and H. Ghodosi

Considering the fact that for two independent probability distributions P0 and
P1, if |P0 −P1| = 1

d , the required number of samples for applying distinguishing
attack is n ≈ 1

2d
2; the number of samples for performing the relation (6) is

1
2 (236.73)2 = 272.46. However, for each round, there are 31× 24 = 29.53 relations,
such as relation (6), since the number of pairs related in Table 1 is 24, and the
number of consecutive 2-bits in a 32-bit word is 31. Therefore, the number of
required samples for applying a distinguishing attack in MV3 cipher is given by:

n = 2−9.53 × 272.46 = 262.93.

That is, after observing approximately 262.93 bits, the key stream generated in
the MV3 cipher will be distinguished from a truly random sequence.

3.3 Other Biases

In addition to the above biased relation, some biased relations with different
probabilities can be found. However, these biases are less than the above biased
relation. We will now explain two other biased relations:

1. This bias uses the correlation between outputs in times t, t+ 4, τ , and τ + 4
as follows:

[xi · c]0,1 ⊕ [(xi + Const1) · c]0,1 ⊕ [xi′ · c]0,1 ⊕ [(xi′ + Const2) · c]0,1 ⊕ (7)
[Aj ]7,8 ⊕ [Aj + AConst1]7,8 ⊕ [Aj′ ]7,8 ⊕ [Aj′ + AConst2]7,8 ⊕

[Bk]23,24 ⊕ [Bk + BConst1]23,24 ⊕ [Bk‘]23,24 ⊕ [Bk‘ + BConst2]23,24 = 0.

with probability

1
2

(
1 + 22 × (

2
3
)3 × (2−22.78)3

)
≈ 1

2
+ 2−69.

For each round, there are 20 + 19 + . . . + 2 + 1) = 27.7 relations, such as
relation (7). The number of samples required to perform a distinguishing
attack is 2129.28 (For more details see Appendix A).

1. The other biased relation is achieved by considering outputs in times t, t+1,
t+ 2, t+ 3, τ , τ + 1, τ + 2, and τ + 3. We will have:

Outputt ⊕Outputt+1 ⊕Outputt+2 ⊕Outputt+3 ⊕ (8)
Outputτ ⊕Outputτ+1 ⊕Outputτ+2 ⊕Outputτ+3 = 0,

with probability 1
2 + 2−58.31. The number of useful relations in each round

is equal to 31 × 50 = 210.6. Hence, the required number of samples can be
determined by 2105.2 (similar computations of Appendix A can be done for
this case).



Cryptanalysis of MV3 Stream Cipher 247

Table 2. Theoretical and experimental results related to the length of array T

3.4 Simulation Results

The presented results are supported by performing a distinguishing attack on a
short version of the MV3 Algorithm. The only difference between the original
version and the short version is the length of array T which is decreased from
256 to 16, 32, and 48. The simulation results are presented in Table 2. Note that
with this arrangement, the length of the internal state is decreased to about 4500,
5000, and 5600 bits for the array lengths of 16, 32, and 48, respectively. As in
theoretical results, for the array T with length 16, after observing approximately
230 bits, the output is distinguishable from a random sequence.

4 Conclusions

In [3,4], it is claimed that on their proposed MV3 cipher, no attack faster than
the exhaustive key search can be mounted for keys of length up to 256 bits.

We have proposed a distinguishing attack that could distinguish the MV3
output from a truly random sequence, after observing approximately 262.93 out-
put bits. This means that the security of MV3 cipher is not higher than 63 bits
and theoretically the cipher is insecure for the recommended key size.

References

1. Cho, J., Pieprzyk, J.: Multiple Modular Additions and Crossword Puzzle Attack on
NLSv2. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 230–248. Springer, Heidelberg (2007)

2. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Trans. on Inform. Theory IT-31, 469–472 (1985)

3. Keller, N., Miller, S., Mironov, I., Venkatesan, R.: MV3: A new word based stream
cipher using rapid mixing and revolving buffers. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 1–19. Springer, Heidelberg (2006)

4. Keller, N., Miller, S., Mironov, I., Venkatesan, R.: MV3: A new word based stream
cipher using rapid mixing and revolving buffers. In: Third International Workshop
on series of The State of the Art of Stream Ciphers (SASC 2007), pp. 275–286 (2007)



248 M.A. Orumiehchi, S.F. Mohebbipoor, and H. Ghodosi

Appendix A

We searched all possible values for i and i1 in the set of relation (8), such that,
|i − i1|, |j − j1|, and |k − k1| are minimum. Our observation was that the best
scenario is:

|i− i1| = |j − j1| = |k − k1| = 4

Therefore, in 5 consecutive turns, the value xt is as follows:

xt = xt

xt+1 = (xt + T [j])
xt+2 = (xt + T [j] + T [k])
xt+3 = (xt + T [j] + T [k] + T [�])
xt+2 = (xt + T [j] + T [k] + T [�] + T [m])

Const1 = T [j] + T [k] + T [�] + T [m]

These sets of relations are independent from j, k, �, and m, since we do not
consider any conditions on these indices. Moreover, the value xτ (τ �= t) is also
considered.

xτ = xτ

xτ+1 = (xτ + T [o])
xτ+2 = (xτ + T [o] + T [p])
xτ+2 = (xτ + T [o] + T [p] + T [q])
xτ+2 = (xτ + T [o] + T [p] + T [q] + T [r])

Const2 = T [o] + T [p] + T [q] + T [r]

However,

Pr[Const1 = Const2] =
4!(

256
4

) ≈ 2−22.78.

Therefore, a biased relation can be considered as:

We can utilize this relation for the two least significant bits, using Theorem 3:

Pr([xt · c]0,1 ⊕ [(xt + Const1) · c]0,1 ⊕ [xτ · c]0,1 ⊕

[(xτ + Const2) · c]0,1 = 0) ≈ 1
2

+ 0.66× 2−22.78

The above relation determines the correlation between xt · c, (xt + Const1) ·
c, xτ · c, and (xτ + Const2) · c as t and τ are times, which are presented in
Table 3.



Cryptanalysis of MV3 Stream Cipher 249

Table 3. All useful indices of xt, A[.] and B[.]

nUmber of xt A[.] B[.]
Relations i i1 j j1 k k1

1 0 4 5 9 14 18
2 1 5 14 18 21 25
3 3 7 0 4 3 7
4 4 8 9 13 10 14
5 5 9 18 22 17 21
6 6 10 27 31 24 28
7 8 12 13 17 6 10
8 9 13 22 26 13 17
9 11 15 8 12 27 31
10 12 16 17 21 2 6
11 13 17 26 30 9 13
12 14 18 3 7 16 20
13 15 19 12 16 23 27
14 18 22 7 11 12 16
15 19 23 16 20 19 23
16 20 24 25 29 26 30
17 21 25 2 6 1 5
18 22 26 11 15 18 12
19 23 27 20 24 15 19
20 26 30 15 19 4 8
21 27 31 24 28 11 15

Appendix B

Proof of Theorem 3 – Following [1], we consider two cases: (i) when n is
even, and (ii) when n is odd.

Case n is Even

The carry R(x, y) generated in modular addition is defined as follows.

R(x, y)(0) = x(0)y(0)

R(x, y)(i) = x(i)y(i) ⊕Σi−1
j=0x(i)y(i)Π

i
k=j+1(x(k) ⊕ yk)), i = 1, . . . , 31

Let us denote

Φn,(i) = R(x1, k)(i) ⊕R(x2, k)(i) ⊕ . . .⊕R(xn, k)i)

By definition, R(x, k)(i) = x(i)k(i) ⊕ (x(i) ⊕ k(i))R(x, k)(i−1).Then,

Φn,(i) = k(i)(x1,(i) ⊕ x2,(i) ⊕ . . .⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i))R(x1, k)(i−1) ⊕
((x2,(i) ⊕ k(i))R(x2, k)(i−1) ⊕ . . .⊕ (xn ⊕ k(i))R(xn, k)(i−1)



250 M.A. Orumiehchi, S.F. Mohebbipoor, and H. Ghodosi

Thus Φn,(i) has the following properties:

– If ⊕n
t=1xt,(i) = 0, then (x1,(i), x2,(i), . . . , xn,(i), k(i)) and ((1 ⊕ x1,(i)), (1 ⊕

x2,(i)), . . . , (1 ⊕ xn,(i)), (1 ⊕ k(i))) produce identical Φn,(i).
– If ⊕n

t=1xt,(i) = 1, then Φn,(i) by (x1,(i), x2,(i), . . . , xn,(i), k(i)) is complement
to the one by ((1 ⊕ x1,(i)), (1 ⊕ x2,(i)), . . . , (1 ⊕ xn,(i)), (1 ⊕ k(i)))

Hence, by defining Pr,(i) = Pr[⊕r
t=1R(xt, k)(i−1) = 0], the result is (where

P0 = 1):

Pn,(i) =
1
2

n+1 [
Σ

n
2
r=0

(
n
2r

)
2P2r,(i−1) +Σ

n
2 −1
r=0

(
n

2r + 1

)]
=

1
4

+
1
2n
Σ

n
2
r=0

(
n
2r

)
P2r,(i−1)

Hence, for i� 0 we will have:

Pn,(i) ≈
n+ 2

2(n+ 1)
.

By definition, we can write (x+k)(i) = x(i)⊕k(i)⊕R(x, k)(i−1). Thus, the result
is:

Γi · (x1 + k) ⊕ Γi · (x2 + k)⊕ . . .⊕ Γi · (xn + k)Γi · (x1 ⊕ x2 ⊕ . . .⊕ xn)
= Γi−1 · (R(x1, k)⊕R(x2, k) ⊕ . . . R(xn, k))

= k(i)(x1,(i) ⊕ x2,(i) ⊕ . . .⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i) ⊕ 1)R(x1, k)(i−1) ⊕
(x2,(i) ⊕ k(i) ⊕ 1)R(x2, k)(i−1) ⊕ . . .⊕ (xn,(i) ⊕ k(i) ⊕ 1)R(xn, k)(i−1)

As before, we can establish the following equation:

Pr
[
Φn,(i−1) ⊕ Φn,(i) = 0

]
=

1
4

+
1
2n
Σ

n
2
r=0

(
n
2r

)
Pn−2r,(i−1)

=
1
4

+
1
2n
Σ

n
2
r=0

(
n

n− 2r

)
Pn−2r,(i−1)

= Pn,(i)

Therefore, for i� 0, we have

Pr
[
Φn,(i−1) ⊕ Φn,(i) = 0

]
≈ n+ 2

2(n+ 1)

Case n is Odd

If n is odd, Φn,(i) has the following properties.

– If ⊕n
t=1xt,(i) = 0, then Φn,(i) by (x1,(i), x2,(i), . . . , xn,(i), 0) is complement to

the one by ((1 ⊕ x1,(i)), (1 ⊕ x2,(i)), . . . , (1 ⊕ xn,(i)), 1).



Cryptanalysis of MV3 Stream Cipher 251

– If ⊕n
t=1xt,(i) = 1, then Φn,(i) by (x1,(i), x2,(i), . . . , xn,(i), 0) is identical to the

one by ((1 ⊕ x1,(i)), (1 ⊕ x2,(i)), . . . , (1 ⊕ xn,(i)), 1).

Hence, we can establish the following equation

Pn,(i) =
1
2

n+1 [
Σ

n
2
r=0

(
n
2r

)
+Σ

n
2
r=0

(
n

2r + 1

)
2P2r+1,(i−1)

]
=

1
4

+
1
2n
Σ

n
2
r=0

(
n

2r + 1

)
P2r+1,(i−1)

Proceeding as before, we get

Pr
[
Φn,(i−1) ⊕ Φn,(i)

]
=

1
4

+
1
2n
Σ

n
2
r=0

(
n

2r + 1

)
Pn−2r−1,(i−1)

=
1
4

+
1
2n
Σ

n
2
r=0

(
n

n− 2r − 1

)
Pn−2r−1,(i−1)

Therefore, for i� 0, we have

Pr
[
Φn,(i−1) ⊕ Φn,(i)

]
≈ n+ 2

2(n+ 1)

which completes the proof.



3D: A Three-Dimensional Block Cipher

Jorge Nakahara Jr.

École Polytechnique Fédérale de Lausanne
EPFL, 1015 Lausanne, Switzerland
jorge nakahara@yahoo.com.br

Abstract. The main contribution of this paper is a new iterated secret-
key block cipher called 3D, inspired by the AES cipher. The 3D cipher
has an SPN design, operates on 512-bit blocks, uses 512-bit keys, it-
erates 22 rounds, and employs a 3-dimensional state, instead of the 2-
dimensional matrix of the AES. The main innovation of 3D includes the
multi-dimensional state, generalizing the design of Rijndael, and allow-
ing block sizes beyond the 256-bit boundary. This features motivates the
use of 3D as a building block for compression functions in hash functions,
MAC and stream cipher constructions requiring large internal states. We
explain the design decisions and discuss the security of 3D under several
attack settings.

Keywords: block cipher design, 3-dimensional state.

1 Introduction

Secret-key ciphers, such as block and stream ciphers, are designed for fast en-
cryption of large volumes of data. This paper describes a block cipher called
3D, inspired by the design of the AES [16] and with some innovative designs. In
the AES, plaintext, ciphertext, subkeys and intermediate data blocks are repre-
sented by a 2-dimensional 4× Nb state matrix of bytes, where Nb is the number
of 32-bit words in a text block. For example, the state matrix of a 4t-byte text
block, A = (a0, a1, a2, . . . , a4t−1), can be represented

State matrix =

⎛⎜⎜⎝
a0 a4 . . . a4t−4
a1 a5 . . . a4t−3
a2 a6 . . . a4t−2
a3 a7 . . . a4t−1

⎞⎟⎟⎠ , (1)

with bytes inserted columnwise. This state matrix provides not only a compact
representation of the plaintext and ciphertext blocks, but was also motivated
by two round transformations in Rijndael: ShiftRows and MixColumns [16]. The
former explicitly operates on the rows of the state, while the latter operates only
on the columns of the state.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 252–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



3D: A Three-Dimensional Block Cipher 253

In Rijndael, the block size is variable and ranges from 128 up to 256 bits in
steps of 32 bits [16,26]. In the AES, complete text diffusion is achieved in two
rounds, due to a combination of ShiftRows and MixColumns over a 4 × 4 state
matrix. Key diffusion, though, takes longer depending on the key size. As the
block size increases, it takes more rounds to guarantee fast diffusion for both
text and key bits. This may be a reason for the upperbound of 256 bits for
the block size in AES. This fact motivates our research, leading to 3D, with
a larger block size (512 bits) which makes it attractive as a building block in
the Miyaguchi-Preneel, Davies-Meyer or Matyas-Meyer-Oseas construction of
compression functions (in this setting, it can be compared to SHA-512 [15]) in
hash functions [29, p.340], and for stream modes of operation (OFB, CFB) whose
security depends on the size of the internal cipher state, and in pseudorandom
number generators [29, p.173].

This paper is organized as follows: Sect. 2 describes the new block cipher 3D;
Sect. 3 describes the key schedule algorithm of 3D; Sect. 4 shows a security anal-
yses of 3D; Sect. 5 estimates the software performance of 3D; Sect. 6 concludes
the paper.

2 The 3D Block Cipher

The 3D block cipher operates on 512-bit blocks and uses 512-bit keys, both of
which are represented as a 4 × 4 × 4 state of bytes (a 3-dimensional cube). The
state for a 64-byte data block, A = (a0, a1, . . . , a63), is denoted

State =

⎛⎜⎜⎝
a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

∣∣∣∣∣∣∣∣
a16 a20 a24 a28

a17 a21 a25 a29

a18 a22 a26 a30

a19 a23 a27 a31

∣∣∣∣∣∣∣∣
a32 a36 a40 a44

a33 a37 a41 a45

a34 a38 a42 a46

a35 a39 a43 a47

∣∣∣∣∣∣∣∣
a48 a52 a56 a60

a49 a53 a57 a61

a50 a54 a58 a62

a51 a55 a59 a63

⎞⎟⎟⎠ , (2)

with bytes inserted columnwise. Each square set of 16 bytes is called a slice of
the state (Fig. 1). Since all three dimensions of the state are equal, we set an
orientation in (2): the set (a0, a1, . . ., a15) represents the front slice or first
vertical slice; the set (a16, a17, . . . , a31) represents the second vertical slice, and
so on. These slices are relevant for operation θ1, described later. Other vertical
slices exist, such as (a0, a1, a2, a3, a16, a17, a18, a19, a32, a33, a34, a35, a48, a49,
a50, a51), which is relevant for operation θ2, described later.

A reason for the 512-bit user key is that key-recovery attacks applied either on
top or at the bottom of a given distinguisher will have to recover 512 subkey bits
with a complexity of 2512, which is about the exhaustive key search effort, and
the same size of the codebook. If the user key was larger, say 1024 bits, shortcut
attacks would become less expensive.

The round transformations in 3D are denoted:

– κi: a 4 × 4 × 4 state of bytes representing the 512-bit i-th round subkey is
exclusive-ored bytewise to the i-th round state; the exclusive-or operation is
an involution, and does not seem susceptible to weak keys/subkeys [11];



254 J. Nakahara Jr.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������������������
���������
���������
���������
���������

���������
���������
���������
���������

second slice

third slice

fourth slice

first slicevertical slices

0

1

2

3

4

5

7

6

8 12

9 13

10 14

11 15

16 20 24 28

12

13

14

15

28

29

30

31

44

45

46

47

60

61

62

63

3632 40 44

60565248

0 4 8 12

Fig. 1. 3D state with vertical slices and byte numbering

– γ: this nonlinear operation is responsible for the confusion property [35] in
3D, and consists of the bytewise application of the AES S-box to all bytes
of the state;

– θ1, θ2: these diffusion operations [35] are applied in alternate rounds in 3D.
They are identical to ShiftRows in AES, but since the state is 3-dimensional,
two different sets of vertical slices of the state (Fig. 1) are affected in turn.
θ1 operates on the vertical slices in Fig. 1, and turn (2) into

⎛⎜⎜⎝
a0 a4 a8 a12

a5 a9 a13 a1

a10 a14 a2 a6

a15 a3 a7 a11

∣∣∣∣∣∣∣∣
a16 a20 a24 a28

a21 a25 a29 a17

a26 a30 a18 a22

a31 a19 a23 a27

∣∣∣∣∣∣∣∣
a32 a36 a40 a44

a37 a41 a45 a33

a42 a46 a34 a38

a47 a35 a39 a43

∣∣∣∣∣∣∣∣
a48 a52 a56 a60

a53 a57 a61 a49

a58 a62 a50 a54

a63 a51 a55 a59

⎞⎟⎟⎠ ; (3)

θ2 operates similarly, but transforms (2) into⎛⎜⎜⎝
a0 a4 a8 a12

a17 a21 a25 a29

a34 a38 a42 a46

a51 a55 a59 a63

∣∣∣∣∣∣∣∣
a16 a20 a24 a28

a33 a37 a41 a45

a50 a54 a58 a62

a3 a7 a11 a15

∣∣∣∣∣∣∣∣
a32 a36 a40 a44

a49 a53 a57 a61

a2 a6 a10 a14

a19 a23 a27 a31

∣∣∣∣∣∣∣∣
a48 a52 a56 a60

a1 a5 a9 a13

a18 a22 a26 a30

a35 a39 a43 a47

⎞⎟⎟⎠ ; (4)

– π: the 4×4 MDS matrix of the Anubis cipher [2] is applied to each column of
every vertical slice of the state in (2). The branch number [16] of the Anubis
matrix is 5 since it satisfies the MDS (Maximum Distance Separable) prop-
erty [27]. Since the state is 3-dimensional, complete diffusion is achieved in
three rounds, in combination with θ1 and θ2. This matrix is an involution,
which guarantees the same diffusion power and computational cost for both
the encryption and decryption operations. One matrix multiplication by a
column of a slice of the state costs 4 xors and 5 xtimes, where xtimes means
multiplication by 2 (or the polynomial x) in GF(28). Thus, one matrix mul-
tiplication by one slice costs 16 xors and 20 xtimes. For one state matrix
the cost is 64 xors and 80 xtimes. Let an input slice to π be denoted (a0,
a1, . . ., a15), and the output slice be (b0, b1, . . . , b15). An example of the π
transformation for a single slice is



3D: A Three-Dimensional Block Cipher 255

⎛⎜⎜⎝
01x 02x 04x 06x
02x 01x 06x 04x
04x 06x 01x 02x
06x 04x 02x 01x

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞⎟⎟⎠ =

⎛⎜⎜⎝
b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

⎞⎟⎟⎠ , (5)

where the subscript x denotes hexadecimal notation.

All round transformations in 3D operate bytewise. Bytes are treated as ele-
ments over GF(28) = GF(2)[x]/(m(x)), where m(x) = x8 + x4 + x3 + x + 1 is
the same irreducible polynomial of AES. A polynomial p(x) =

∑t
i=0 ai · xi ∈

GF(2)[x], with ai ∈ GF(2), for 0 ≤ i ≤ t, will be denoted by the numerical value∑t
i=0 ai · 2i, and is shortly represented in hexadecimal notation. For example,

m(x) = 11Bx.
The i-th full round of 3D, encrypting a text block X , is denoted τi(X) =

π ◦ θi mod 2+1 ◦ γ ◦ κi(X) = π(θi mod 2+1(γ(κi(X)))), namely function composi-
tion, ◦, operates in right-to-left order. The last round does not include π, and
is denoted ηr−1(X) = θ(r−1) mod 2+1 ◦ γ ◦ κr−1(X). The inverse of a full round
is τ−1

i (X) = κ−1
i ◦ γ−1 ◦ θ−1

i mod 2+1 ◦ π−1(X), and the inverse of the last round is
η−1

r−1(X) = κ−1
r−1 ◦ γ−1 ◦ θ−1

(r−1) mod 2+1. Notice that κi is the only key-dependent
round operation, whereas γ, θ1, θ2 and π are fixed key-independent transforma-
tions. Furthermore, there is an output transformation after ηr−1 consisting of
κr, the r-th round subkey.

Properties of the round components include:

(a) κi = κ−1
i , because the exclusive-or operation is an involution;

(b) γ−1 �= γ because the AES S-box is not an involution but has order 277182,
namely, γ277182[x] = x, ∀x ∈ GF(28) (see [34]);

(c) θi �= θ−1
i , i ∈ {1, 2}, because the inverse of θi requires displacing rows in the

opposite direction in each slice; the order of θi is 4, that is, θ4i (X) = X , for
i = 1, 2;

(d) π = π−1, because the Anubis matrix is an involution;
(e) γ ◦ θi = θi ◦ γ, namely, γ and θi commute, for i ∈ {1, 2}, since both operate

bytewise; similarly, γ−1 ◦ θ−1
i = θ−1

i ◦ γ−1;
(f) κi ◦ π = π ◦ κ′i, where κ′i = π−1(κi);
(g) κi ◦ θi mod 2+1 = θi mod 2+1 ◦ κ∗i , where κ∗i = θ−1

i mod 2+1(κi);
(h) κi◦γ �= γ◦κi because γ is a non-linear operation with respect to exclusive-or;
(i) π ◦ θi mod 2+1 �= θi mod 2+1 ◦ π because π operates on columns of the state

while θi mod 2+1 operates on rows of the state.

Using these properties, one can prove that the encryption and decryption frame-
works of 3D are similar. Consider the r-round 3D encryption of a plaintext block
P , resulting in the ciphertext block

C = κr ◦ ηr−1 ◦©r−2
i=0 τi(P ) =

κr ◦ θ(r−1) mod 2+1 ◦ γ ◦ κr−1 ◦©r−2
i=0 (π ◦ θi mod 2+1 ◦ γ ◦ κi)(P ) . (6)



256 J. Nakahara Jr.

The decryption scheme is

P = ©0
i=r−2τ

−1
i ◦ η−1

r−1 ◦ κ−1
r (C) , (7)

which can be expressed as P = ©0
i=r−2(κ

−1
i ◦γ−1◦θ−1

i mod 2+1◦π−1)◦η−1
r−1◦κ−1

r (C).
From (a) and (d): P = ©0

i=r−2(κi ◦ γ−1 ◦ θ−1
i mod 2+1 ◦ π) ◦ η

−1
r−1 ◦ κr(C). From (e)

and (f): P = ©0
i=r−2(κi◦θ−1

i mod 2+1◦γ−1◦π)◦κr−1◦θ−1
(r−1) mod 2+1◦γ−1◦κr(C) =

κ0◦θ−1
1 ◦γ−1◦©1

i=r−1(π◦κi◦θ−1
i mod 2+1◦γ−1)◦κr(C) = κ0◦θ−1

1 ◦γ−1◦©1
i=r−1(κ

∗
i ◦

π ◦ θ−1
i mod 2+1 ◦ γ−1) ◦ κr(C)= κ0 ◦ θ−1

1 ◦ γ−1 ◦ κ∗1 ◦©1
i=r(π ◦ θ−1

(i−1) mod 2+1 ◦ γ−1 ◦
κ∗i )(C),

where κ∗r = κr and κ∗i = π(κi), for i < r. Thus, the encryption (6) and de-
cryption (7) frameworks are similar, except for the order of some round subkeys,
and some inverse transformations. Consequently, both schemes have the same
cryptographic strength [21].

Properties (h) and (i) show that the round subkeys cannot be moved around or
sorted out from the other round transformations because of the non-
commutativity property. Thus, it is not possible to arbitrarily remove key-
independent cipher operations, such as γ, θ1, θ2 and π.

The suggested number of rounds for 3D is 22. This decision is in line with
Rijndael, where the block size ranges from 128 up to 256 bits, and roughly
one round is added for every additional 32 bits in the block size. Thus, as-
suming Rijndael with 256-bit block iterates 14 rounds, 3D iterates 22 rounds.
This number of rounds is more than enough to counter the attacks described
in Sect. 4, and further, there is still a large margin of security. For performance
comparison, the AES operates on 128-bit blocks, and iterates (up to) 14 rounds;
3D encrypts four times more texts at a time but iterates 8/14 ≈ 57% more
rounds.

3 Key Schedule of 3D

For r-round 3D encryption and decryption operations, (r + 1) 512-bit subkeys
are needed. The number of rounds is r = 22, as explained in Sect. 2.

The key schedule works as follows:

– the 512-bit user key K = (k0, k1, . . . , k63) becomes the first round
subkey;

– in [36], Wu described an attack on block ciphers with a variable number of
rounds. A suggested countermeasure is to combine the number of rounds in
the cipher, for instance, in the key schedule, so that cipher instances with
different number of rounds are not useful for this attack. This suggestion has
been adopted in 3D. Let κ∗ represent the exclusive-or of the subkey state
with a constant 4× 4× 4 matrix depending on the number of rounds, r, and
the Anubis matrix:



3D: A Three-Dimensional Block Cipher 257

⎛⎜⎜⎝
r 2r 4r 6r
2r r 6r 4r
4r 6r r 2r
6r 4r 2r r

∣∣∣∣∣∣∣∣
2r r 6r 4r
4r 6r r 2r
6r 4r 2r r
r 2r 4r 6r

∣∣∣∣∣∣∣∣
4r 6r r 2r
6r 4r 2r r
r 2r 4r 6r
2r r 6r 4r

∣∣∣∣∣∣∣∣
6r 4r 2r r
r 2r 4r 6r
2r r 6r 4r
4r 6r r 2r

⎞⎟⎟⎠ , (8)

where multiplication is in GF(28); these constants are used to avoid patterns
in the user key to propagate to round subkeys. Without these constants, a
user key with all bytes equal could lead to subkeys with all bytes equal, for
instance. It could make 3D susceptible to related-key [4], slide or advanced
slide attacks [8], independent of the number of rounds.

– the remaining round subkeys are computed as Ki = π ◦ θi mod 2+1 ◦ γ′ ◦
κ∗(Ki−1), i ≥ 1, and K0 = K. The transformation γ′ consists of the byte-
wise application of the AES S-box to alternate columns of the state as
follows:

⎛⎜⎜⎝
S[a0] a4 a8 a12

S[a1] a5 a9 a13

S[a2] a6 a10 a14

S[a3] a7 a11 a15

∣∣∣∣∣∣∣∣
a16 S[a20] a24 a28

a17 S[a21] a25 a29

a18 S[a22] a26 a30

a19 S[a23] a27 a31

∣∣∣∣∣∣∣∣
a32 a36 S[a40] a44

a33 a37 S[a41] a45

a34 a38 S[a42] a46

a35 a39 S[a43] a47

∣∣∣∣∣∣∣∣
a48 a52 a56 S[a60]
a49 a53 a57 S[a61]
a50 a54 a58 S[a62]
a51 a55 a59 S[a63]

⎞⎟⎟⎠ .

(9)

The encryption subkey generation can be performed on-the-fly. Storing the last
round subkey, Kr, instead of K allows on-the-fly decryption subkey generation
since all key schedule operations are invertible: Ki = κ∗ ◦ γ′−1 ◦ θ−1

i mod 2+1 ◦
π(Ki+1), 0 ≤ i < 22.

Due to the similarity with the encryption framework, it can be shown that
complete key diffusion is achieved after three subkeys are generated, that is,
every byte of K3 already depends on every byte of K0.

As for performance, notice that the key schedule costs slightly less than a
single encryption, although both use similar operations.

4 Security Analyses

In the following, we analyse 3D under several attack settings.

4.1 Plaintext Leakage

Due to the birthday paradox [29], after about 2n/2 encryptions, either in ECB
or CBC modes, an n-bit block cipher starts to leak information about the
plaintext [21], in a ciphertext-only (CO) setting. For 3D, this leakage happens
after 2512/2 = 2256 block encryptions (or decryptions), which sets an upper-
bound on the number of plaintext blocks encrypted before the key has to be
changed.



258 J. Nakahara Jr.

4.2 Related-Key Attack

In [3], Biham developed an attack method on arbitrary n-bit block ciphers, that
depends only on the key size. Thus, his attack is also independent of the number
of rounds. This attack is supported by the birthday paradox, and has complexity
2k/2 encryptions, for a k-bit user key. Even though for 3D the key size is equal
to the block size, the corresponding attack complexity is 2512/2 = 2256, which
matches the attack complexity in Sect. 4.1.

There are many kinds of related-key attacks, such as in Sect. 4.5 and [4,20],
and all of them depend on the design of the key schedule algorithm. The key
schedule of 3D shares components with its encryption framework (Sect. 3). It
implies that (xor) difference propagation works similarly in both schemes, which
is relevant for related-key attacks, where the adversary cannot choose the key,
but knows or can choose a relationship between keys used for encryption. In
particular, it takes three (full) rounds for any single byte difference to spread
across the full key state, that is, a single byte difference in the user key(s)
will affect the (full) third round subkey and beyond. Consequently, related-key
attacks are not expected to be effective against 3D, since any nonzero difference
in the key spreads to the entire key state after the third subkey (comparatively,
complete diffusion in the key schedule of AES takes six or more rounds depending
on the key size).

4.3 Non-surjective and Davies’ Attacks

Non-surjective attacks on block ciphers have been suggested by Rijmen et al.
in [33], motivated by non-surjective round functions in Feistel ciphers, such as
CAST and Khufu [30]. Similarly, Davies’ attack [13] exploit the Feistel struc-
ture of DES, and subkey bits shared between neighboring S-boxes. The 3D
cipher follows an SPN design, and not only its round function, but also its
internal components are bijective mappings. Moreover, no subkey bits are dupli-
cated or shared among S-boxes. Therefore, non-surjective attacks do not apply
to 3D.

4.4 Interpolation, Higher-Order Differential and χ2 Attacks

In [17], Jakobsen and Knudsen described attacks on a cipher called PURE and on
a variant of the SHARK block cipher [32]. In both cases the attacks were made
possible because the ciphers had a compact algebraic (polynomial/rational) ex-
pression which could be solved with manageable complexity (up to a certain
number of rounds). We have not found any compact (polynomial) representa-
tion of round function of 3D (over GF(28)), or of its round components which
leads to an effective attack (to the full 22-round 3D). We do not consider expres-
sions such as in [14], which although compact, did not lead to an effective attack
on AES. Analogously, because of the non-linear order of the S-box, we do not
expect higher-order differential attacks [23,25] to succeed against 3D. Following
a similar reasoning, we do not expect χ2 attacks [24] nor mod-n attacks [19] to
apply to 3D.



3D: A Three-Dimensional Block Cipher 259

4.5 Slide and Advanced-Slide Attacks

In [7,8], the slide and advanced-slide attacks were described against Feistel ci-
phers whose key schedules had a periodic behavior. Moreover, in these attacks,
symmetries in the cipher framework, suggested that this structure could be
twisted and slided in order to partially match another copy of itself. Thus, these
attacks depend on a self-similarity in the cipher structure, and a degree of pe-
riodicity in the key schedule. In 3D, the key schedule was designed to avoid
patterns in the user key to propagate to the subkeys, including the periodicity
necessary in [7,8]. Moreover, there is a round asymmetry due to θ1 and θ2. We
conclude that such attacks do not apply to 3D (Sect. 2).

4.6 Truncated Differential Analysis

As a preliminary differential analysis [5], consider truncated differentials [23], such
as (10), where ‘∆’ stands for an arbitrary nonzero exclusive-or byte difference,
while ’0’ stands for a zero byte difference.

⎛⎜⎝ ∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ π◦θ1◦γ◦κ0→

⎛⎜⎝ ∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠
π◦θ2◦γ◦κ1→

⎛⎜⎝ ∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ θ1◦γ◦κ2→

⎛⎜⎝ ∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ π→

⎛⎜⎝ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠
θ2◦γ◦κ3→

⎛⎜⎝ ∆ ∆ ∆ ∆
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
∆ ∆ ∆ ∆
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
∆ ∆ ∆ ∆
0 0 0 0
0 0 0 0

⎞⎟⎠ π→

⎛⎜⎝ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

⎞⎟⎠ (10)

The 4-round truncated differential (10) demonstrates that complete text dif-
fusion in 3D is achieved in exactly three rounds (see the last three rounds). There
are 25 active S-boxes [9] in (10), and this fact is independent of the position of
the single ∆ byte difference after the first round. Analogously, this behaviour is
independent of (10) starting with a round using θ1 or θ2. Notice that (10) holds
with probability 28/232 = 2−24, due to the difference propagation after the first
round, where four byte differences turn into a single byte difference. The re-
maining difference propagation patterns hold with certainty. Comparatively, for
4-round AES there are also at least 25 active S-boxes. These figures show that
3D has the same expected resistance to differential cryptanalysis (DC) as the
AES.

An advantage of truncated differentials (compared to conventional differential
characteristics) is that the probability of the former is independent of the S-boxes
used in the cipher.



260 J. Nakahara Jr.

Consider the (hypothetical) 2-round iterative truncated differential (11), that
holds with probability (28/232)4 = 2−96. This probability accounts for the θ2
transformation in which four nonzero byte differences in the same column become
a single output difference after each slice of the state. Each such event has
probability 28/223 = 2−24.
⎛⎜⎝ ∆ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ π◦θ1◦γ◦κ0→

⎛⎜⎝ ∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

⎞⎟⎠
π◦θ2◦γ◦κ1→

⎛⎜⎝ ∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ (11)

For a random permutation the output difference of (11) would appear with
probability about (2−8)48 = 2−384 because there are 48 zero byte differences at
the output. Thus, (11) is a distinguisher of 3D from a random permutation, for
up to six rounds, with probability (2−96)3 = 2−288. Repeating (11) four times,
namely, for eight rounds, leads to a probability of (2−96)4 = 2−384, which is the
same as for a random permutation. One can also start the distinguisher with the
state after π ◦ θ1 ◦ γ ◦ κ0. That means that the iterative truncated differential
start in an even round (with θ2). The results are analogous.

Suppose one makes a pool of 232 chosen plaintexts (CP) in which the bytes in
positions (0,16,32,48) of the state (2) range over all possible 32-bit values, while
the remaining bytes are arbitrary constants. This pool leads to about 263 text
pairs (plaintext and ciphertexts). The output difference contains 60 zero byte
differences. Thus, one expects that 263 · (2−8)60 = 2−417 < 1 pairs satisfy the
output difference of (11). This approach does not work.

Suppose one tries to guess the 16 bytes of AK0, and use pools of 2128 plaintexts
with difference at bytes in positions (0, 5, 10, 15, 16, 21, 26, 31, 32, 37, 42, 47, 48,
53, 58, 63) of the state. Each such pool can lead to 2128(2128 − 1)/2 ≈ 2255 text
pairs. Still 2255 · (2−8)60 = 2−225 < 1 survives filtering by output difference of
(11). Notice that due to the structure of 3D, with θ1 and θ2 in every other round,
any iterative differential needs to have an even number of rounds, otherwise, it
could not be concatenated to itself.

4.7 Linear Analysis

A linear distinguisher [28] for 3D would be similar to (10) except that ∆ is
replaced by Γ , denoting a nonzero bitmask, while 0 denotes a zero (empty or
trivial) bitmask. Thus, such linear distinguisher would reach three rounds with
21 active S-boxes, and according to [16], the associated bias would be (2−4)21 =
2−84. For four rounds, the bias would be (2−4)25 = 2−100. Comparatively, for
the AES the number of active S-boxes across four rounds is at least 25. These
figures show that 3D has the same expected resistance to linear cryptanalysis as
the AES. The questions of linear hulls [31] and multiple linear relations [18] in
3D are left as open problems.



3D: A Three-Dimensional Block Cipher 261

4.8 Multiset Analysis

Consider the first-order multiset [12,6] distinguisher in (12), where ’A’ denotes
an active byte, ’P’ denotes a passive byte, ’B’ denotes a balanced byte and ’?’
denotes an unpredictable byte exclusive-or sum. The distinguisher (12) reaches
4.25 rounds, or more precisely, κ4 ◦ π ◦ θ2 ◦ γ ◦ κ3 ◦ π ◦ θ1 ◦ γ ◦ κ2 ◦ π ◦ θ2 ◦ γ ◦
κ1 ◦ π ◦ θ1 ◦ γ ◦ κ0.

⎛⎜⎝ A P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

⎞⎟⎠ π◦θ1◦γ◦κ0→

⎛⎜⎝ A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

⎞⎟⎠ θ2◦γ◦κ1→

⎛⎜⎝ A P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
A P P P

∣∣∣∣∣∣∣
P P P P
P P P P
A P P P
P P P P

∣∣∣∣∣∣∣
P P P P
A P P P
P P P P
P P P P

⎞⎟⎠ π→

⎛⎜⎝ A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣
A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣
A P P P
A P P P
A P P P
A P P P

∣∣∣∣∣∣∣
A P P P
A P P P
A P P P
A P P P

⎞⎟⎠ θ1◦γ◦κ2→

⎛⎜⎝ A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣
A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣
A P P P
P P P A
P P A P
P A P P

∣∣∣∣∣∣∣
A P P P
P P P A
P P A P
P A P P

⎞⎟⎠ π→

⎛⎜⎝ A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣
A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣
A A A A
A A A A
A A A A
A A A A

∣∣∣∣∣∣∣
A A A A
A A A A
A A A A
A A A A

⎞⎟⎠ κ4◦π◦θ2◦γ◦κ3→ (12)

⎛⎜⎝ B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

⎞⎟⎠ γ→

⎛⎜⎝ ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞⎟⎠

An attack on 4.75-round 3D using (12) would partially decrypt κ5 ◦θ1 ◦γ, and
recover κ5 bytewise. The distinguisher (12) provides an 8-bit condition. After two
λ-sets [12], there remains 28 ·(2−8)2 < 1 wrong subkey byte candidates. The cost
per subkey byte is therefore, 2 · 28 = 29 chosen plaintexts (CP), 28 · 28 + 28 ≈ 216

computations of κ5 ◦ θ1 ◦ γ. That means 64 · 216 · 0.75/4.25 ≈ 219.5 4.75-round
computations.

Consider now the higher-order multiset distinguisher (13) that uses λ-sets
with 2128 texts. A byte belonging to a 128-bit active word is denoted A∗ to
indicate that although the bytes are scattered across the state, they jointly form
a 128-bit active word; similarly, a byte belonging to a 128-bit balanced word is
denoted B∗; a byte belonging to a 128-bit passive word is denoted P ∗; a byte
belonging to a 128-bit even word is denoted E∗; different subscripts indicate
different 128-bit words.



262 J. Nakahara Jr.

⎛⎜⎝ A∗ P P P
P A∗ P P
P P A∗ P
P P P A∗

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

⎞⎟⎠ θ1◦γ◦κ0→

⎛⎜⎝ A∗ P P P
A∗ P P P
A∗ P P P
A∗ P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
P P P P

⎞⎟⎠ θ2◦γ◦κ1◦π→

⎛⎜⎝ A∗ P P P
P P P P
P P P P
P P P P

∣∣∣∣∣∣∣
P P P P
P P P P
P P P P
A∗ P P P

∣∣∣∣∣∣∣
P P P P
P P P P
A∗ P P P
P P P P

∣∣∣∣∣∣∣
P P P P
A∗ P P P
P P P P
P P P P

⎞⎟⎠ π→

⎛⎜⎝ E∗
1 P P P

E∗
1 P P P

E∗
1 P P P

E∗
1 P P P

∣∣∣∣∣∣∣
E∗

2 P P P
E∗

2 P P P
E∗

2 P P P
E∗

2 P P P

∣∣∣∣∣∣∣
E∗

3 P P P
E∗

3 P P P
E∗

3 P P P
E∗

3 P P P

∣∣∣∣∣∣∣
E∗

4 P P P
E∗

4 P P P
E∗

4 P P P
E∗

4 P P P

⎞⎟⎠ θ1◦γ◦κ2→

⎛⎜⎝ E∗
1 P P P

P P P E∗
1

P P E∗
1 P

P E∗
1 P P

∣∣∣∣∣∣∣
E∗

2 P P P
P P P E∗

2
P P E∗

2 P
P E∗

2 P P

∣∣∣∣∣∣∣
E∗

3 P P P
P P P E∗

3
P P E∗

3 P
P E∗

3 P P

∣∣∣∣∣∣∣
E∗

4 P P P
P P P E∗

4
P P E∗

4 P
P E∗

4 P P

⎞⎟⎠ π→

⎛⎜⎝ E∗
1 E∗

1 E∗
1 E∗

1
E∗

1 E∗
1 E∗

1 E∗
1

E∗
1 E∗

1 E∗
1 E∗

1
E∗

1 E∗
1 E∗

1 E∗
1

∣∣∣∣∣∣∣
E∗

2 E∗
2 E∗

2 E∗
2

E∗
2 E∗

2 E∗
2 E∗

2
E∗

2 E∗
2 E∗

2 E∗
2

E∗
2 E∗

2 E∗
2 E∗

2

∣∣∣∣∣∣∣
E∗

3 E∗
3 E∗

3 E∗
3

E∗
3 E∗

3 E∗
3 E∗

3
E∗

3 E∗
3 E∗

3 E∗
3

E∗
3 E∗

3 E∗
3 E∗

3

∣∣∣∣∣∣∣
E∗

4 E∗
4 E∗

4 E∗
4

E∗
4 E∗

4 E∗
4 E∗

4
E∗

4 E∗
4 E∗

4 E∗
4

E∗
4 E∗

4 E∗
4 E∗

4

⎞⎟⎠ π◦θ2◦γ◦κ3→

⎛⎜⎝ A∗
1 A∗

1 A∗
1 A∗

1
A∗

1 A∗
1 A∗

1 A∗
1

A∗
1 A∗

1 A∗
1 A∗

1
A∗

1 A∗
1 A∗

1 A∗
1

∣∣∣∣∣∣∣
A∗

2 A∗
2 A∗

2 A∗
2

A∗
2 A∗

2 A∗
2 A∗

2
A∗

2 A∗
2 A∗

2 A∗
2

A∗
2 A∗

2 A∗
2 A∗

2

∣∣∣∣∣∣∣
A∗

3 A∗
3 A∗

3 A∗
3

A∗
3 A∗

3 A∗
3 A∗

3
A∗

3 A∗
3 A∗

3 A∗
3

A∗
3 A∗

3 A∗
3 A∗

3

∣∣∣∣∣∣∣
A∗

4 A∗
4 A∗

4 A∗
4

A∗
4 A∗

4 A∗
4 A∗

4
A∗

4 A∗
4 A∗

4 A∗
4

A∗
4 A∗

4 A∗
4 A∗

4

⎞⎟⎠ κ5π◦θ1◦γ◦κ4→

⎛⎜⎝ B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

∣∣∣∣∣∣∣
B B B B
B B B B
B B B B
B B B B

⎞⎟⎠ γ→

⎛⎜⎝ ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞⎟⎠ (13)

Thus, (13) covers 5.25 rounds. An attack on 5.75-round 3D using (13) would
partially decrypt κ6 ◦ θ2 ◦ γ, and recover κ6 bytewise, by comparing if each byte
position before γ is balanced. The distinguisher (13) provides an 8-bit condition
per byte. After two λ-sets [12], there remains 28 · (2−8)2 < 1 wrong subkey byte
candidates. The cost per subkey byte is therefore, 2·2128 = 2129 chosen plaintexts
(CP), 28 ·2128 = 2136 computations of κ6◦θ2◦γ. That means 64·2136 ·0.75/5.75 ≈
2139 5.75-round computations.

4.9 Impossible Differential Analysis

The impossible differential (ID) technique was formerly described in [22]. A 4.75-
round impossible differential distinguisher of 3D is depicted in (14), where ’∆’
denotes a nonzero byte difference, ’0’ denotes a zero byte difference, and ’?’
denotes an unknown difference (can be zero or not). There are two truncated
differentials in (14) that hold with certainty, one in the encryption direction,
covering π ◦ θ2 ◦ γ ◦ κ3 ◦ π ◦ θ1 ◦ γ ◦ κ2 ◦ π ◦ θ2 ◦ γ ◦ κ1 and the other in the
decryption direction, covering κ4◦γ−1◦θ−1

1 ◦π◦κ5◦γ−1◦θ−1
2 . The contradiction

in difference propagation (denoted �→ and �←) happens after the third π layer:



3D: A Three-Dimensional Block Cipher 263

there are four zero byte differences in the decryption direction after π, while all
these bytes are nonzero before π. There are similar ID distinguishers that cause
contradiction in the other slices of the state.

⎛⎜⎝ ∆ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ π◦θ2◦γ◦κ1→

⎛⎜⎝ ∆ 0 0 0
∆ 0 0 0
∆ 0 0 0
∆ 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠
θ1◦γ◦κ2→

⎛⎜⎝ ∆ 0 0 0
0 0 0 ∆
0 0 ∆ 0
0 ∆ 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ π→

⎛⎜⎝ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠
θ2◦γ◦κ3→

⎛⎜⎝ ∆ ∆ ∆ ∆
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 0
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
∆ ∆ ∆ ∆
0 0 0 0

∣∣∣∣∣∣∣
0 0 0 0
∆ ∆ ∆ ∆
0 0 0 0
0 0 0 0

⎞⎟⎠ π→

⎛⎜⎝ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

⎞⎟⎠ κ4◦γ−1◦θ
−1
1

�←

⎛⎜⎝ 0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

∣∣∣∣∣∣∣
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

⎞⎟⎠ π←

⎛⎜⎝ 0 ∆ ∆ ∆
0 ∆ ∆ ∆
0 ∆ ∆ ∆
0 ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

⎞⎟⎠
κ5◦γ−1◦θ

−1
2←

⎛⎜⎝ 0 ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
0 ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆
0 ∆ ∆ ∆
∆ ∆ ∆ ∆

∣∣∣∣∣∣∣
∆ ∆ ∆ ∆
0 ∆ ∆ ∆
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

⎞⎟⎠ (14)

Distinguisher (14) can be used to recover κ0 in an attack on 5.75-round 3D,
by placing (14) in the last 4.75 rounds. The attack would proceed as follows:

(a) choose a pool 232 texts with all possible values in positions 0, 5, 10, 15 of
the state, and arbitrary constants in the remaining byte positions. From one
pool, one can generate 232(232 − 1)/2 ≈ 263 pairs with nonzero difference in
these four byte positions, and zero difference in the remaining positions;

(b) from (14), about 263 · 2−32 = 231 pairs satisfy the four zero byte differences
at the ciphertext;

(c) guess 32 subkey bits in byte positions 0, 5, 10, 15 of κ0, and partially decrypt
the first round π ◦ θ1 ◦ γ ◦ κ0 for the pairs in item (b); filter those pairs that
have a single nonzero byte difference in the leftmost column of the first
vertical slice of the state after π; this is a 24-bit filtration condition, since
it holds with probability 2−3∗8; so, 232−24 = 28 wrong key are suggested by
(14) per text pair;

(d) due to collisions, the number of wrong subkeys surviving, using one text
pool, is 232(1 − 28/232)2

31
= 232(1 − 2−24)2

31 ≈ 232/e128 < 1, so the correct
subkey can be uniquely identified;

The attack complexity is 232 CP, about 232 ·231 = 263 one-round computations to
recover 32 subkey bits. To recover the full first round subkey requires repeating



264 J. Nakahara Jr.

the attack sixteen times, yielding 16 · 263/5.75 ≈ 265.5 5.75-round computations,
and 232 memory.

5 Software Performance

Since 3D and AES/Rijndael share very similar components, it is natural to
compare them. Due to the large block size, each 3D encryption roughly equals
four AES encryptions, with bytes interleaved due to θ1 and θ2. Note that 3D
iterates 22 rounds, and the AES has at most 14 rounds (for 256-bit keys). Thus,
the latter has a better performance than the former. Although 3D provides
more opportunities for parallelism than AES or Rijndael, this feature has not
been exploited in performance comparisons.

6 Conclusions

This paper described a new secret-key block cipher called 3D, aimed at secure
and fast encryption of large volumes of data. The design of 3D was inspired by
the AES, in which text and key blocks are represented by a 2-dimensional state
matrix of bytes. The main innovation of 3D is the 4× 4× 4 3-dimensional state
of bytes, that led to improvements in design, security and potential applications
(hash functions, MACs, stream ciphers, pseudorandom number generators).

Table 1 lists the attack complexities of our security evaluation of 3D.

Table 1. Attack complexities on reduced-round 3D cipher

Attack Time Data Memory #Rounds Comments
Multiset 219.5 29 CP 28 4.75 Sect. 4.8

ID 265.5 236 CP 232 5.75 Sect. 4.9
Multiset 2139 2129 CP 2128 5.75 Sect. 4.8

The block size of 3D can be parameterized. For instance, if the underlying
cipher operations were performed over GF(216) instead of over GF(28), then the
block size would double to 64 ·16 = 1024 bits, but the storage of a 16×16 S-box
becomes prohibitive. We have chosen the field GF(28) since it is adequate even
for smartcard processing, and because it avoids endianness issues.

Alternatively, keeping the bytewise operations, larger states could also be
constructed with dimensions 5 × 5 × 5 or 6 × 6 × 6, for instance, but requiring
new and larger MDS matrices. Mini-cipher versions of 3D can use a 3 × 3 × 3
state of bytes, but a new 3 × 3 MDS matrix is needed. For analysis purposes,
mini versions of 3D could use 4-bit words instead of bytes, leading to a 256-bit
block cipher.

In [1], Barkan and Biham described the concept of dual ciphers, which means
an isomorphism between the original cipher framework and another instance
with isomorphic mappings for the plaintext, ciphertext and key. As an exam-
ple, they described duals of the AES, which also exists for Rijndael and 3D. It



3D: A Three-Dimensional Block Cipher 265

is an open problem how to exploit dual ciphers in an effective attacks against
AES/Rijndael, 3D and similar ciphers. Analogously, the algebraic attacks de-
scribed by Courtois and Pieprzyk [10] against the AES (and 3D) still remain as
open research problems.

References

1. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

2. Barreto, P.S.L.M., Rijmen, V.: The ANUBIS Block Cipher. In: 1st NESSIE Work-
shop, Heverlee, Belgium (2000)

3. Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228 steps.
Information Processing Letters 3(84), 117–124 (2002)

4. Biham, E.: New Types of Cryptanalytic Attacks using Related Keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 1(4), 3–72 (1991)

6. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

8. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

9. Coppersmith, D.: The Data Encryption Algorithm and its Strength Against At-
tacks. IBM Journal on Research and Development 3(38), 243–250 (1994)

10. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Quadratic Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

12. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

13. Davies, D.W., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of Cryptol-
ogy 1(8), 1–25 (1995)

14. Ferguson, N., Schroeppel, R., Whiting, D.: A Simple Algebraic Representation of
Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
103–111. Springer, Heidelberg (2001)

15. FIPS 180-2: Secure Hash Standard, SHS (2002), http://csrc.nist.gov/
16. FIPS197: Advanced Encryption Standard (AES), FIPS PUB 197 Federal Informa-

tion Processing Standard Publication 197, U.S. Department of Commerce (2001)
17. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: Bi-

ham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)
18. Kaliski Jr, B.S., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approx-

imations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39.
Springer, Heidelberg (1994)

http://csrc.nist.gov/


266 J. Nakahara Jr.

19. Kelsey, J., Schneier, B., Wagner, D.: Mod n Cryptanalysis, with Applications
against RC5P and M6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp.
139–155. Springer, Heidelberg (1999)

20. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-Way, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

21. Knudsen, L.R.: Block Ciphers – A Survey. In: Preneel, B., Rijmen, V. (eds.) State of
the Art in Applied Cryptography. LNCS, vol. 1528, pp. 18–48. Springer, Heidelberg
(1998)

22. Knudsen, L.R.: DEAL – a 128-bit Block Cipher, Technical Report #151, University
of Bergen, Dept. of Informatics, Norway (1998)

23. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

24. Knudsen, L.R., Meier, W.: Correlations in RC6 with a Reduced Number of Rounds.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 94–108. Springer, Heidelberg
(2001)

25. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Proceedings of
Symposium on Communication, Coding and Cryptography, Monte Verita, Switzer-
land, pp. 227–233 (1994)

26. Lenstra, H.W.: Rijndael for Algebraists (2002),
http://math.berkeley.edu/∼hwl/papers

27. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Mathematical Library 16 (1977)

28. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

29. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton

30. Merkle, R.C.: A Software Encryption Function, posted to sci.crypt USENET news-
group (1989)

31. Nyberg, K.: Linear Approximation of Block Ciphers. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

32. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The Cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–112. Springer,
Heidelberg (1996)

33. Rijmen, V., Preneel, B., De Win, E.: On Weaknesses of Non-Surjective Round
Functions. Design, Codes and Cryptography 3(12), 253–266 (1997)

34. Rosenthal, J.: A Polynomial Description of the Rijndael Advanced Encryption
Standard. Journal Algebra Appl. 2(2), 223–236 (2003)

35. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28, 656–715 (1949)

36. Wu, H.: Related-Cipher Attacks. In: Deng, R. (ed.) ICICS 2002. LNCS, vol. 2513,
pp. 447–455. Springer, Heidelberg (2002)

http://math.berkeley.edu/~hwl/papers


3D: A Three-Dimensional Block Cipher 267

A Appendix A

A test vector for 3D follows in hexadecimal notation.

– plaintext P1:⎛⎜⎜⎝
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

⎞⎟⎟⎠
– key K1:⎛⎜⎜⎝

00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

∣∣∣∣∣∣∣∣
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x
00x 00x 00x 00x

⎞⎟⎟⎠
– ciphertext C1 = E(K1, P1):⎛⎜⎜⎝

efx 93x 49x 10x
f3x eax f5x 8cx
d0x eex f8x 7cx
fex 58x 54x 33x

∣∣∣∣∣∣∣∣
67x b2x b4x 59x
03x 46x 33x edx
ebx 70x 28x dax
2bx abx 40x 34x

∣∣∣∣∣∣∣∣
adx 01x 4fx 3ax
b6x 22x 7fx 40x
62x ddx 29x 67x
d3x 66x d5x 4cx

∣∣∣∣∣∣∣∣
0cx 97x fex e7x
cdx 02x 52x b3x
84x 53x 14x 1dx
5fx 63x 0bx 0ax

⎞⎟⎟⎠



Construction of Resilient Functions with
Multiple Cryptographic Criteria

Chao Li1,2, Shaojing Fu1, and Bing Sun1

1 Department of Mathematics and System Science
Science College, National University of Defence Technology

Changsha 410073, China
2 National Mobile Communications Research Laboratory,

Southeast University, Nanjing 210018, China
lichao nudt@sina.com

Abstract. Based on a [u, m, t + 1]-code C, an approach to construct
(n, m, t) resilient functions with multiple cryptographic criteria including
high nonlinearity, high algebraic degree and nonexistence of nonzero
linear structure is described. Particularly, when u = 2m, this kind of
construction can be made simply.

Keywords: Resilient function, Linear Code, Nonlinearity, Linear
structure.

1 Introduction

Resilient functions have wide applications in quantum key distribution, fault-
tolerant distributed computing, random sequence for stream ciphers and S-box
for block ciphers. It is now well accepted that for an (n,m, t) resilient function
in symmetric cipher systems, it must satisfy such properties as high nonlinear-
ity, high algebraic and good propagation character. All of these parameters are
important in resisting on different kinds of attacks, so the researches on crypto-
graphic resilient functions are paid more and more attention[1,2,3,4,5]. E.Pasalic,
S.Maitra and T.Johamsson constructed many (n,m, t) resilient functions with
high nonlinearity by using linear codes in 2002 and 2003 [6,7]. However, we note
that the functions with good resiliency and high nonlinearity could imply some
cryptographic weakness such as existence of linear structures. For example, [8]
demonstrated that the (n,m, t) resilient functions obtained from the paper [4,
6, 7] have nonzero linear structures. In order to get better resilient functions,
Y.Z Wei and Y.P.Hu tried to construct (n,m, t) resilient functions with mul-
tiple cryptographic criteria including high nonlinearity, high algebraic degree
and nonexistence of nonzero linear structure in 2004 [9]. Their construction was
based on a [u,m, t+1]−code and its dual code. Although they didn’t make sure
that the two codes are disjoint, but in the proof of lemma 5 of their paper, the
properties of disjoint was needed, otherwise, it was impossible to construct a
u-basis-set Dc in this lemma.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 268–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Construction of Resilient Functions with Multiple Cryptographic Criteria 269

In this paper, we provide an approach to construct (n,m, t) resilient functions
with multiple cryptographic criteria based a [u,m, t+1]-codeC. Our construction
only depends on the linear code C and has nothing to do with its dual code C⊥.

2 Preliminaries

Let F2 be the binary finite field, the vector space of dimension n over F2 is
denoted by Fn

2 and (Fn
2 )∗ denotes the set of all nonzero vector of Fn

2 . By Vn we
mean the set of all Boolean functions of n variables, and we interpret a Boolean
function f(x1, x2, · · · , xn) as the output column of its truth table, that is, a
binary string of length 2n having the form:

{f(0, 0, · · · , 0), f(0, 0, · · · , 1), · · · , f(1, 1, · · · , 1)}.

The weight of f is the number of ones in its output column, and is denoted by
wt(f). An n-variable function f is said to be balanced if wt(f) = 2n−1.

An n-variable function f can be considered to be a multivariate polynomial
over F2. This polynomial can be express as a sum of products representation
of all distinct kth-order(k < n) product terms of the variables. The number of
variables in the highest order product term with nonzero coefficient is called the
algebraic degree of f (abbr. deg(f)).

Functions with degree at most one are called affine functions, affine functions
with f(0) = 0 are called linear functions. The set of all n-variable affine functions
is denoted by An, the set of all n-variable affine functions is denoted by Ln. The
nonlinearity of an n-variable function f is the distance between f and the set of
all n-variable affine functions, this is denoted by nl(f). The walsh transform of
an n-variable function f is a real valued function defined as

Wf (u) =
∑

x∈F n
2

(−1)f(x)+x·u

where the dot product of vectors x and u is defined as

x · u = x1u1 + x2u2 + · · ·+ xnun.

An n−variable function f is called t-resilient if and only if Wf (u) = 0 for all u
with 0 ≤ wt(u) ≤ t, and f is said to have a linear structure, say a, if and only if
f(x+ a) + f(x)(abbr. Df )is a constant function.

Let us consider the vector-valued function F (x) = (f1(x), f2(x), · · · , fm(x)),
then the nonlinearity of F is defined as

nl(F ) = min{nl(
m∑

i=1

τifi(x))|τ = (τ1, · · · , τm) ∈ (Fm
2 )∗}.

Similarly, the algebraic degree of F is defined as

deg(F ) = min{deg(
m∑

i=1

τifi(x))|τ = (τ1, · · · , τm) ∈ (Fm
2 )∗}.



270 C. Li, S. Fu, and B. Sun

F is said to be an (n,m, t) resilient function if and only if
∑m

i=1 τifi(x) is an
t−resilient function for any τ = (τ1, τ2, · · · , τm) ∈ (Fm

2 )∗. Moreover, a is said to
be a linear structure of F if and only if a is a linear structure of

∑m
i=1 τifi(x)

for any τ = (τ1, τ2, · · · , τm) ∈ (Fm
2 )∗.

Definition 1. A set D is called n-basis-set, if it satisfies the following two
conditions:

(1) D ⊂ Fn
2 .

(2) There exists ri ∈ D(i = 1, 2, · · · , n) such that r1, r2, · · · , rn is a basis of Fn
2 ,

and there exists i �= j such that ri + rj ∈ D, where 1 ≤ i, j ≤ n.

Lemma 1. [9]If D is an n-basis-set, then the function f(x) = b · x(x ∈ D) is
not a constant function for any b ∈ (Fn

2 )∗.

3 Construction of Resilient Functions with Multiple
Cryptographic Criteria

In this section, we will provide a new method to construct (n,m, t) resilient
functions with multiple cryptographic criteria. Firstly, we give an example that
the [u,m, t + 1]−code and its dual code are not disjoint, and the construction
from [9] is not valid in this case.

Example 1. Consider a [7,3,3]-code C with a basis

{[1, 0, 0, 1, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1], [0, 0, 1, 0, 1, 0, 1]}.

Then the dual code C⊥ of C is a [7, 4, 2]−code which has a basis

{[1, 1, 0, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 0, 1, 0]}.

It is easily seen that [1, 1, 1, 0, 0, 0, 1] ∈ C ∩C⊥ and there does not exist a matrix
T defined in the proof of lemma 5 in [9] which has 23 rows and 3 columns such
that every 23 nonzero codewords obtained in any linear combination of columns
(not all zero) is still a 7-basis-set D such that |D| = 23 and wt(x) ≥ 2 for any
x ∈ D. Hence, the (7 + 3, 3, 1) resilient function which does not exist nonzero
linear structure can not be constructed by their methods.

Lemma 2. Let C be a [u,m, t+1]−code. Then there exists a u-basis-set D, such
that |D| = 2q and wt(x) ≥ t+ 1 for any x ∈ D, where ln(u+ 4) ≤ q ≤ m.

Proof. Let r1 = (0, 1, 1, · · · , 1, 1, 1), r2 = (1, 0, 1, · · · , 1, 1, 1), · · · , ru−1 =
(1, 1, 1, · · · , 1, 0, 1), ru = (1, 1, 1, · · · , 1, 1, 1), where r1, r2, · · · , ru ∈ Fu

2 . It is
noted that {r1, r2, · · · , ru−1, ru} is a basis of Fu

2 . Now we construct a set D
of 2q elements as follows:



Construction of Resilient Functions with Multiple Cryptographic Criteria 271

(1) r1, r2, · · · , ru−1, ru ∈ D.
(2) Choose two different c1, c2 ∈ C such that ci �= rj(i = 1, 2, j = 1, 2, · · · , u)

and c1 + c2 �= rj(j = 1, 2, · · · , u), let c1, c2, c1 + c2 ∈ D.
(3) The remaining 2q − (u+ 3) elements are chosen arbitrarily from C.

Then D is a u-basis-set such that |D| = 2q and wt(x) ≥ t+ 1 for any x ∈ D. In
fact, since {r1, r2, · · · , ru−1, ru} is a basis of Fu

2 , c1, c2 can be linearly represented
by {r1, r2, · · · , ru−1, ru}. Noted that c1 is independent to c2, we can find two
different vectors from the basis {r1, r2, · · · , ru−1, ru}, and substitute the two
vectors by c1, c2 in this base, these new vectors are still a basis of Fu

2 . From
definition 1, we obtain that u-basis-set. In addition, since the minimal distance
of C is t+ 1 and wt(rj) ≥ u− 1, then for any x ∈ D, wt(x) ≥ t+ 1. �

Theorem 1. Let C be a [u,m, t + 1]−code, and let f(x, y) = ϕ(x) · y + g(x),
x ∈ F q

2 , y ∈ Fu
2 , where g(x) = x1x2 · · ·xq, and ϕ(x) is a bijection from F q

2 to the
u-basis-set D constructed in lemma 2. Then the following results hold:

1) f(x, y) does not exist nonzero linear structure.
2) f(x, y) is an (n, 1, t) resilient function with n = u+ q.
3) nl(f) = 2n−1 − 2u−1.
3) deg(f) ≥ q.

Proof. 1) For any (a, b) ∈ Fn
2 , where a ∈ F q

2 and b ∈ Fu
2 , let

Df = f(x+ a, y + b) + f(x, y) = ϕ(x + a) · (y + b) + g(x+ a) + ϕ(x) · y + g(x).

If a = 0, then Df = ϕ(x) · b. From lemma 1, we know that Df is not a constant
function. If a �= 0, then ϕ(x+ a) +ϕ(x) �= 0, hence Df is balanced, it is also not
a constant function. According to the definition of linear structure, f(x, y) does
not exist nonzero linear structure.

2) Let a = (a1, a2), where a1 ∈ F q
2 and a2 ∈ Fu

2 with 0 ≤ wt(a) ≤ t. Then

Wf (a) =
∑
x,y

(−1)f(x,y)+(a1,a2)·(x,y)

=
∑
x,y

(−1)ϕ(x)·y+g(x)+a1·x+a2·y

=
∑

x

(−1)g(x)+a1·x ·
∑

y

(−1)(ϕ(x)+a2)·y.

From lemma 2, wt(a2) ≤ t and wt(ϕ(x)) ≥ t, then ϕ(x)+a2 �= 0 for any x ∈ F q
2 .

Hence, Wf (a) = 0 for all a ∈ F2u , 0 ≤ wt(a) ≤ t.
3) Since

Wf (a) =

{
0, ϕ(x) + a2 �= 0 for any x ∈ F q

2 ,

2u, ∃x, ϕ(x) + a2 = 0.

Therefore, nl(f) = 2n−1 − 2u−1.
4) Since the degree of g(x) is q, then the degree of ϕ(x) · y + g(x) is not less

than q. �



272 C. Li, S. Fu, and B. Sun

Lemma 3. [6] Let {c0, c1, · · · , cm−1} be a basis of a [u,m, t+ 1]−code C, β be
a primitive element of F2m and {1, β, · · · , βm−1} be a basis of F2m . Define a
bijection φ : F2m → C by

φ(a0 + a1β + · · ·+ am−1β
m−1) = a0c0 + a1c1 + · · ·+ am−1cm−1

Let A and B be two matrices of dimension (2m − 1)×m and m×m respectively
as follows:

A =

⎛⎜⎜⎜⎝
φ(1) φ(β) · · · φ(βm−1)
φ(β) φ(β2) · · · φ(βm)

...
...

. . .
...

φ(β2m−2) φ(1) · · · φ(βm−2)

⎞⎟⎟⎟⎠

B =

⎛⎜⎜⎜⎝
φ(1) φ(β) · · · φ(βm−1)
φ(β) φ(β2) · · · φ(βm)

...
...

. . .
...

φ(βm−1) φ(βm) · · · φ(β2m−2)

⎞⎟⎟⎟⎠
Then the following results hold:
(1)For any linear combination of columns (not all zero) of A, each nonzero
codeword of C will appear exactly once.
(2)For any linear combination of columns (not all zero) of B, there exist a set
of m nonzero codewords such that it is a basis of C.

According to the knowledge of linear algebra and error-corrected codes, the
following result is easily verified.

Lemma 4. Let C be a [u,m, t+1]−code, then there exists a [u, u−m, t∗+1]−code
C∗ such that C ∩ C∗ = 0, where t∗ + 1 ≥ 1.

Based on the above lemmas 3 and 4, we can obtain:

Lemma 5. Let C be a [u,m, t + 1]−code and C∗ be a [u, u −m, t∗ + 1]−code.
Then there exists a matrix T which has 2q rows and m columns, such that every
2q nonzero codewords obtained from any linear combination of columns (not all
zero) is still a u-basis-set D with |D| = 2q and wt(x) ≥ d for any x ∈ D, where
ln(u+ 1) ≤ q ≤ u−m, u ≥ 2m, d = min(t+ 1, t∗ + 1).

Proof. Let {c0, c1, · · · , cm−1} be a basis of C, β be a primitive element of F2m ,
{r0, r1, · · · , ru−m−1} be a basis of C∗, β∗ be a primitive element of F2u−m . Define
a bijection φ1: F2m → C by

φ1(a0 + a1β + · · ·+ am−1β
m−1) = a0c0 + a1c1 + · · ·+ am−1cm−1,

and define a bijection φ2: F2u−m → C∗ by

φ2(a0 + a1β
∗ + · · ·+ am−1(β∗)u−m−1) = a0r0 + a1r1 + · · ·+ au−m−1ru−m−1.



Construction of Resilient Functions with Multiple Cryptographic Criteria 273

Now we denote four matrices A1, A2, B1, B2 as follows:

A1 =

⎛⎜⎜⎜⎝
φ1(1) φ1(β) · · · φ1(βm−1)
φ1(β) φ1(β2) · · · φ1(βm)

...
...

. . .
...

φ1(βm−1) φ1(m) · · · φ1(β2m−2)

⎞⎟⎟⎟⎠

A2 =

⎛⎜⎜⎜⎝
φ2(1) φ2(β∗) · · · φ2((β∗)m−1)
φ2(β∗) φ2((β∗)2) · · · φ2((β∗)m)

...
...

. . .
...

φ2((β∗)u−m−1) φ2((β∗)u−m) · · · φ2((β∗)u−2)

⎞⎟⎟⎟⎠

B1 =

⎛⎜⎜⎜⎝
φ1(βm) φ1(βm+1) · · · φ1(β2m−1)
φ1(βm+1) φ1(βm+2) · · · φ1(β2m)

...
...

. . .
...

φ1(β2m−2) φ1(1) · · · φ1(βm−2)

⎞⎟⎟⎟⎠

B2 =

⎛⎜⎜⎜⎝
φ2((β∗)u−m) φ2((β∗)u−m+1) · · · φ2((β∗)u−1)
φ2((β∗)u−m+1) φ2((β∗)u−m+2) · · · φ2((β∗)u)

...
...

. . .
...

φ2((β∗)2
u−m−2) φ2(1) · · · φ2((β∗)u−m−2)

⎞⎟⎟⎟⎠
Let T be the following 2q ×m matrix:

T =

⎛⎝A1
A2
A3

⎞⎠
where the rows of A3 are chosen from the rows of B1 and B2 arbitrarily. From
lemmas 3 and 4, we know that the matrix T has the property that every 2q

nonzero codeword obtained from any linear combination of columns (not all
zero) of the matrix T is still a u-basis-set D such that |D| = 2q and wt(x) ≥ d
for any x ∈ D. �
Theorem 2. Let T be the matrix constructed in lemma 5, define

F (x, y) = (f1(x, y), f2(x, y), · · · , fm(x, y)),

where fi(x, y) = ϕi(x) · y + gi(x) for x ∈ F q
2 and y ∈ Fu

2 , gi(x) is any Boolean
function on F q

2 , and ϕi(x) is any bijection from F q
2 to the i-th column of matrix

T , ln(u+ 1) ≤ q ≤ u−m, u ≥ 2m. Then the following results hold:

(1) F (x, y) does not exist nonzero linear structures.
(2) F (x, y) is (n,m, t) resilient function with d = min(t, t∗) and n = u+ q.
(3) F (x, y) = 2n−1 − 2u−1.
(4) The degree of F (x, y) can exceed to q − 2.



274 C. Li, S. Fu, and B. Sun

Proof. Let τ = (τ1, τ2, · · · , τm) ∈ (Fm
2 )∗, then

m∑
i=1

τifi(x, y) =
m∑

i=1

τiϕi(x) · y +
m∑

i=1

τigi(x).

From lemma 5 we know that
∑m

i=1 τiϕi(x) is a bijection from F q
2 to a u−basis−

set D, where |D| = 2q and wt(x) ≥ d for any x ∈ D. then we prove (1),(2),(3)as
same as the proof of theorem 1.

Next we prove (4). Note that gi(x) is any Boolean function on F q
2 , we can

distinguish two case:

Case 1: m ≤ q ≤ u−m
Let gi(x) = x1x2 · · ·xi−1xi+1 · · ·xq, then deg(

∑m
i=1 τigi(x)) = q − 1.

Case 2: ln(u+ 1) ≤ q ≤ m− 1
Let S be the following set:

S = {x1x2 · · ·xk−1xk+1 · · · · · ·xi−1xi+1 · · ·xq|k �= i},

and gi(x) (1 ≤ i ≤ m) are selected arbitrarily from set S. Hence,
deg(

∑m
i=1 τigi(x)) = q − 2, we therefore conclude that the degree of F (x, y)

can exceed to q − 2. �

In the following, we are ready to describe our construction:

Construction Procedure 1
Input: a [u,m, t+ 1] linear code C∗, Parameter q.
Output: an (n,m, d) resilient function(n = u+ q).
Step1 Let t∗ = t+ 1;
Step2 Let t∗ = t∗ − 1;
Step3 Search a [u, u−m, t∗ + 1]−code C∗ such that C ∩C∗ = 0, if successful

go to Step4, otherwise go to Step2;
Step4 Obtain the matrix T defined in Lemma 5;
Step5 Let fi(x, y) = ϕi(x) · y + gi(x), where x ∈ GF (2)q and y ∈ GF (2)u;
Step6 output F (x, y) = (f1(x, y), f2(x, y), · · · , fm(x, y)).

However, the major difficult in our construction is the fact that our construction
is available through computer search (which becomes infeasible for a moderate
cardinality of codes). Now we describe an easy way in some special cases.

Let C be a [2m,m, t+1]− code, from lemma 4 we can find a [2m,m]−code C∗

such that C ∩C∗ = 0. Let {c0, c1, · · · , cm−1} be a basis of C, {r0, r1, · · · , rm−1}
be a basis of C∗, β be a primitive element in F2m . Then we define φ1: F2m → C
by

φ1(a0 + a1β + · · ·+ am−1β
m−1) = a0c0 + a1c1 + · · ·+ am−1cm−1,

and define φ2: Fm
2 → C by

φ2(a0 + a1β + · · ·+ am−1β
m−1) = a0r0 + a1r1 + · · ·+ am−1rm−1.



Construction of Resilient Functions with Multiple Cryptographic Criteria 275

Then, it is obvious that G = [φ1(1), φ1(β), · · · , φ1(βm−1)]T and G∗ = [φ2(1),
φ2(β), · · · , φ2(βm−1)]T are the generation matrices of C and C∗. Now we define

H0 = [φ1(1) + φ2(1), φ1(β) + φ2(β), · · · , φ1(βm−1) + φ2(βm−1)]T

H1 = [φ1(1) + φ2(β), φ1(β) + φ2(β2), · · · , φ1(βm−1) + φ2(βm)]T

...
H2m−2 = [φ1(1) + φ2(β2m−2), φ1(β) + φ2(1), · · · , φ1(βm−1) + φ2(βm−2)]T .

Theorem 3. Let C0, C1, · · · , C2m−2 be the linear codes generated by
H0, H1, · · · , H2m−2, respectively. Then

(1) C ∩ Ci = 0 for any 0 ≤ i ≤ 2m − 2.
(2) C∗ ∩Ci = 0 for any 0 ≤ i ≤ 2m − 2.
(3) Ci ∩ Cj = 0 for any 0 ≤ i �= j ≤ 2m − 2.
(4) C0 ∪C1 ∪ · · · ∪C2m−2 ∪C ∪ C∗ = F 2m

2

Proof. (1) For any (x0, x1, · · · , xm−1) �= 0 and (y0, y1, · · · , ym−1) �= 0.

m−1∑
k=0

xkφ1(βk) +
m−1∑
k=0

yk(φ1(βk) + φ2(βk+i))

=
m−1∑
k=0

(xk + yk)φ1(βk) +
m−1∑
k=0

ykφ2(βk+i).

Note that
∑m−1

k=0 (xk + yk)φ1(βk) ∈ C, 0 �=
∑m−1

k=0 ykφ2(βk+i) ∈ C∗, then∑m−1
k=0 (xk + yk)φ1(βk) +

∑m−1
k=0 ykφ2(βk+i) �= 0. Hence, C ∩ Ci �= 0.

(2) For any (x0, x1, · · · , xm−1) and (y0, y1, · · · , ym−1).

m−1∑
k=0

xkφ2(βk) +
m−1∑
k=0

yk(φ1(βk) + φ2(βk+i))

=
m−1∑
k=0

(xk + yk)φ2(βk) +
m−1∑
k=0

ykφ1(βk+i).

Note that 0 �=
∑m−1

k=0 ykφ1(βk+i) ∈ C,
∑m−1

k=0 (xk + yk)φ2(βk) ∈ C∗, then∑m−1
k=0 (xk + yk)φ2(βk) +

∑m−1
k=0 ykφ1(βk+i) �= 0. Hence, we also obtain C∗ ∩

Ci �= 0.
(3) For any (x0, x1, · · · , xm−1) and (y0, y1, · · · , ym−1).

m−1∑
k=0

xk(φ1(βk) + φ2(βk+i)) +
m−1∑
k=0

yk(φ1(βk) + φ2(βk+j))

=
m−1∑
k=0

(xk + yk)φ1(βk) +
m−1∑
k=0

(xkφ2(βk+i) + ykφ2(βk+j)).



276 C. Li, S. Fu, and B. Sun

Note that 0 �=
∑m−1

k=0 (xk + yk)φ1(βk) ∈ C,
∑m−1

k=0 (xkφ2(βk+i) +
ykφ2(βk+j)) ∈ C∗, then

∑m−1
k=0 (xk + yk)φ1(βk) +

∑m−1
k=0 (xkφ2(βk+i) +

ykφ2(βk+j)) �= 0. Hence, we again have Ci ∩ Cj �= 0.
(4) Since every linear code has 2m word, let |C| be the cardinality of C. Then

|C0|+ |C1| + · · ·+ |C2m−2|+ |C| + |C∗| = 22m + 2m

=⇒ C0 ∪C1 ∪ · · · ∪C2m−2 ∪ C ∪ C∗ = F 2m
2 . �

For special linear codes, we are ready to describe our improved construction.

Construction Procedure 2
Input: a [2m,m, t+ 1] linear code C, Parameter q.
Output: an (n,m, d) resilient function(n = 2m+ q).
Step1 Obtain a [2m,m]−code C∗ such that C ∩ C∗ = 0;
Step2 Obtain all the [2m,m]−codes C0, C1, · · · , C2m−2 defined in

Theorem 2;
Step3 Let t∗ = t+ 1;
Step4 Let t∗ = t∗ − 1;
Step5 Search a [2m,m, t∗ + 1]−code from C0, C1, · · · , C2m−2, if successful

go to Step4, otherwise go to Step2;
Step6 Obtain the matrix T defined in Lemma 5;
Step7 Let fi(x, y) = ϕi(x) · y + gi(x), where x ∈ F q

2 and y ∈ Fu
2 defined in

Theorem 2;
Step8 output F (x, y) = (f1(x, y), f2(x, y), · · · , fm(x, y)).

At last, we compare (n,m, t) resilient functions obtained by our construction
with the known constructions.

Table 1. (n, m, t) resilient functions with multiple cryptographic criteria

Linear Codes needed Nonlinearity Degree Nonzero linear structure
[6] A [u, m, t + 1] code 2n−1 − 2u−1 ≥ q Exist
[7] Some disjoint [u, m, t + 1] codes ≥ 2n−1 − 2u−1 ≥ m Exist

this paper A [u, m, t+1] code 2n−1 − 2u−1 ≥ q Not exist

4 Conclusion

In this paper, we study the case that the construction in [9] can’t work, and
describe an improved method for constructing of (n,m, t) resilient functions
which satisfy multiple cryptographic criteria. The construction is based on linear
codes. Given a [u,m, t + 1]−code, we describe a method to construct (n,m, t)
resilient functions and simplify our construction when u = 2m. Our construction
provides a new idea in designing cryptographic functions. Besides, it will be of
interest to find new methods to get a [u, u − m, t∗ + 1]−code C∗ such that C
and C∗ is disjoint in our future research.



Construction of Resilient Functions with Multiple Cryptographic Criteria 277

Acknowledgments

The work in this paper is supported by the National Natural Science Founda-
tion of China (No:60573028) and the open research fund of National Mobile
Communications Research Laboratory of Southeast University (No:W200805).

References

1. Canteaut, A., Carlet, C.: Propagation characteristics and correlation immunity of
highly nonlinear boolean functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 507–522. Springer, Heidelberg (2000)

2. Carlet, C.: On the propagation criterion of degree l and order k. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 463–474. Springer, Heidelberg (1998)

3. Pasalic, E.: Degree optimized resilient boolean functions from Maiorana-MCFarland
class. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp.
93–114. Springer, Heidelberg (2003)

4. Kurosawa, K., Satoh, T.: Design of SAC/PC(l) of order k Boolean functions and
three other cryptographic criteria. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 434–449. Springer, Heidelberg (1997)

5. Zheng, Y., Zhang, X.M.: On plateaued function. IEEE Trans. Inform.Theory 47,
1215–1223 (2001)

6. Pasalic, E., Maitra, S.: Linear code in generalized construction of resilient functions
with very high nonlinearity. IEEE Trans. Inform.Theory 48, 2182–2192 (2002)

7. Johansson, T., Pasalic, E.: A construction of resilient functions with high nonliearity.
IEEE Trans. Inform.Theory 49, 495–501 (2003)

8. Wei, Y.Z., Hu, Y.P.: Reserch on linear structure of several cryptographic functions.
J. of China Institute of Commu. 25, 22–56 (2004)

9. Wei, Y.Z., Hu, Y.P.: A construction of resilient functions with Satisfying Synthetical
Cryptographic Criteria. In: IEEE ISOC ITW 2005 on Coding and Complexity, pp.
248–252



Enumeration of Homogeneous Rotation
Symmetric Functions over Fp

Shaojing Fu1, Chao Li1,2, and Bing Sun1

1 Department of Mathematics and System Science Science College,
National University of Defence Technology,

Changsha 410073, Hunan, China
2 National Mobile Communications Research Laboratory,

Southeast University, Nanjing 210018, Jiangsu, China
shaojing1984@yahoo.cn

Abstract. Rotation symmetric functions have been used as compo-
nents of different cryptosystems. Functions in this class are invariant
under circular translation of indices. In this paper, we will do some
enumeration on homogeneous rotation symmetric functions over Fp. A
formula for counting homogeneous rotation symmetric functions over
Fp is presented when gcd(n, d) is a prime power, where n is the number
of input variables and d is the algebraic degree of the function, which
demonstrates that we solved one of the problems in [7].

Keywords: Rotation symmetry, Algebraic degree, Minimal function,
Monic monomial.

1 Introduction

In [1], Pieprzyk and Qu studied some special functions which are used as the
components in the rounds of hash algorithm. These functions are called rota-
tion symmetric functions. They are invariant under circular translation of in-
dices, and it is clear that this class of functions are very rich in terms of many
cryptographic properties such as nonlinearity and correlation immune. In[2-4],
Stanica, Maitra and Clark gave many results on counting the rotation symmet-
ric functions. They also investigated the correlation immune property of these
functions. Dalai and Maitra studied rotation symmetric bent functions in [5].
Maximov, Hell and Maitra obtained some interesting results about plateaued
rotation symmetric functions in [6]. Yuan Li extended the concept of rotation
symmetric functions from F2 to Fp [7], and he gave a formula to count homo-
geneous rotation symmetric functions with degree no more than 3. We are here
interested in the enumeration of homogeneous rotation symmetric functions over
Fp and provide some better results than the previous works.

The paper is organized as follows. Section 2 presents some basic definitions
and notations. In Section 3, we do some enumeration on homogeneous rotation
symmetric functions over Fp and solve one of the open problems in [7]. Section 4
concludes this paper.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 278–284, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Enumeration of Homogeneous Rotation Symmetric Functions over Fp 279

2 Preliminaries

In this paper, p is a prime. Let Fp be the finite field of p elements, and Fn
p be the

vector space of dimension n over Fp. An n-variable function f(x1, x2, · · · , xn)
can be regarded as a multivariate polynomial over Fp, that is,

f(x1, x2, · · · , xn) =
p−1∑

k1,k2,··· ,kn=0

ak1,k2,··· ,knx
k1
1 x

k2
2 · · ·xkn

n

where ak1,k2,··· ,kn ∈ Fp. This representation of f is called the algebraic normal
form (ANF) of f . k1 +k2 + · · ·+kn is defined as the degree of term with nonzero
coefficient. The greatest degree of all the terms of f is called the algebraic degree
of f , denoted by deg(f). If the degrees of all the terms of f are equal, then we say
f is homogeneous. f(x1, x2, · · · , xn) is called to be affine if f(x1, x2, · · · , xn) =
a1x1 + a2x2 + · · · + anxn + a0. Particularly, f(x1, x2, · · · , xn) = a1x1 + a2x2 +
· · ·+ anxn is called to be linear. We will denote by Fn the set of all functions of
n variables and by Ln the set of affine ones. We will call a function nonlinear if
it is not in Ln.

For variable xi(1 ≤ i ≤ n) and integer k(0 ≤ k ≤ n− 1), we define

ρk
n(xi) =

{
xi+k, if i+ k ≤ n,
xi+k−n, if i+ k > n.

Then the definition of ρk
n can be extend to tuples and monomials as follows:

ρk
n(x1, · · · , xn) =

(
ρk

n(x1), · · · , ρk
n(xn)

)
,

and
ρk

n(xk1
1 x

k2
2 · · ·xkn

n ) = (ρk
n(x1))k1 · · · (ρk

n(xn))kn .

Definition 1. A function f(x1, x2, · · · , xn) over Fp is called to be rotation sym-
metric function if for any x = (x1, . . . , xn) ∈ Fn

p and 0 ≤ k ≤ n− 1, we have

f
(
ρk

n(x1, x2, · · · , xn)
)

= f(x1, x2, · · · , xn).

3 Enumeration of Homogeneous Rotation Symmetric
Functions

In this section, we will enumerate homogeneous rotation symmetric functions
over Fp. Let’s start with some fundamental definitions.

Definition 2. A function f : Fn
p → Fp is called minimal function if

f(x1, x2, · · · , xn) =
t∗−1∑
k=0

ρk
n(xk1

1 x
k2
2 · · ·xkn

n )

where t∗ = min{t|ρt
n(xk1

1 x
k2
2 · · ·xkn

n ) = xk1
1 x

k2
2 · · ·xkn

n , 0 < t ≤ n− 1}.



280 S. Fu, C. Li, and B. Sun

Definition 3. A monic monomial xy1
1 x

y2
2 · · ·xyn

n is analogous to xk1
1 x

k2
2 · · ·xkn

n ,
if there exists a permutation π on n elements such that (k1, k2, · · · , kn) = (yπ(1),
yπ(2), · · · , yπ(n)).

Let Ω(d, p, n) be the equation system as follow:

Ω(d, p, n) :

⎧⎪⎨⎪⎩
y1 + y2 + · · ·+ yn = d

0 ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ p− 1
yi ∈ Z(1 ≤ i ≤ n)

and {(y(j)
1 , y

(j)
2 , . . . , y

(j)
n )|1 ≤ j ≤ NΩ} be all the solutions of Ω(d, p, n), where

NΩ is the number of solutions of Ω(d, p, n).
Now T (n, d) is denoted the number of minimal functions with degree d, and

N(n, d) is denoted the number of n-variable homogeneous rotation symmetric
functions over Fp with degree d.

Lemma 1. Let m(j)
i (0 ≤ i ≤ p − 1, 1 ≤ j ≤ NΩ) be the number of times that i

appears in (y(j)
1 , y

(j)
2 , · · · , y(j)

n )(1 ≤ j ≤ NΩ), then

N(n, d) =
NΩ∑
j=1

n!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

.

Proof. For a fixed j and the corresponding solution (y(j)
1 , y

(j)
2 , · · · , y(j)

n ), the num-

ber of monic monomials analogous to xy
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n is(
n

m
(j)
0

)(
n−m(j)

0

m
(j)
1

)
· · ·
(
n−

∑p−2
i=1 m

(j)
i

m
(j)
p−1

)
=

n!

m
(j)
0 !m(j)

1 ! · · ·m(j)
(p−1)!

so N(n, d) =
∑NΩ

j=1
n!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

.

Theorem 1. N(n, d) ≥ p
∑NΩ

j=1
(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

Proof. Note that a homogeneous rotation symmetric function f(x1, x2, · · · , xn)
with degree d is a nonzero combination of minimal functions with degree d.
That is

f(x1, x2, · · · , xn) =
T (n,d)∑
m=1

amgm(x1, x2, · · · , xn)

where am ∈ Fp, gm(x1, x2, · · · , xn) are minimal functions with degree d.

If a minimal function has the term x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n , then it has all the

terms in the set {ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n − 1}, It is easy to show

that #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n − 1} ≤ n. From Lemma 1 we know



Enumeration of Homogeneous Rotation Symmetric Functions over Fp 281

the number of monic monomials with degree d is
∑NΩ

j=1
n!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

. So the

number of minimal functions T (n, d) ≥
∑NΩ

j=1
(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

. Since f = 0 is

not counted, we get the result.

Note that if n is a prime and n � d, then #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤
n− 1} = n for any 1 ≤ j ≤ NΩ, so we have the following Corollary.

Corollary 1. If n is a prime and n � d, then:

NU(n, d) = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

In [7], it is an open problem to count n-variable homogeneous rotation sym-
metric functions with degree d more than 3. In the following theorems, the case
gcd(n, d) = 1 and the case gcd(n, d) = qr where q is a prime will be solved.

Theorem 2. If gcd(d, n) = 1, then

T (n, d) =
NΩ∑
j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

.

Proof. Let m
(j)
i (0 ≤ i ≤ p − 1, 1 ≤ j ≤ NΩ) as denoted in lemma

1, then #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n − 1} = n. Otherwise, if

#{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n− 1} = N < n, then N | n and n
N > 1,

ρN
n (xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n ) = x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n

⇒ x
y
(j)
1

N+1x
y
(j)
2

N+2 · · ·x
y
(j)
2

n x
y
(j)
2

1 · · ·xy(j)
n

N = x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n

⇒
N∑

j=1

y
(j)
1 =

2N∑
j=N+1

y
(j)
1 = · · · =

n∑
j=n−N

y
(j)
1

It is obviously that
∑N

j=1 y
(j)
1 �= 1. Then

y1 + y2 + · · · + yn = d

⇒ d =
n

N
·

N∑
j=1

y
(j)
1 ⇒ n

N
| d

⇒ gcd(d, n) =
n

N
,

which contradicts with the fact that gcd(d, n) = 1. There are∑NΩ

j=1
n!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

monic monomials with degree d, so T (n, d) =∑NΩ

j=1
(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

.



282 S. Fu, C. Li, and B. Sun

Theorem 3. If gcd(n, d) = qr for some prime q and integer r ≥ 1, then

T (n, d) =
NΩ∑
j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

+
r∑

i=1

qi − 1
qi

T (
n

qi
,
d

qi
).

Proof. First, we make the observation that T (n, d) is the sum between the num-
ber of minimal functions which has n terms(abbr. long minimal functions) and
the number of minimal functions which has terms less than n(abbr. short minimal
functions). Obviously, f(x1, x2, · · · , xn) =

∑t∗−1
k=0 ρ

k
n(xy1

1 x
y2
2 · · ·xyn

n ) has terms
less than n, if and only if there exists a minimal block b = [y1, y2, · · · , yt] such
that (y1, y2, · · · , yn) is covered by concatenating m copies of b. Then it follows
that m divides n and m divides d, so m | qr. Since b is minimal, then it must be
#{ρk

n(xy1
1 x

y2
2 · · ·xyt

n )|0 ≤ k ≤ n− 1} = n. Thus

#short minimal functions =
r∑

i=1

T (
n

qi
,
d

qi
). (1)

Let L be the set of monic monomials of all the long minimal functions, S be the
set of monic monomials of all the short minimal functions. Recall that the total
number of monic monomials with degree d is

∑NΩ

j=1
n!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

. Therefore,

#L =
∑NΩ

j=1
n!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

− #S. The number of long minimal functions is
1
n · #L. Then it follows that

#long minimal functions =
NΩ∑
j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

− 1
n

r∑
i=1

n

qi
T (
n

qi
,
d

qi
) (2)

Putting together (1) and (2), we obtain the number of minimal functions.

The following corollary is the direct result of Theorem 2 and Theorem 3.

Corollary 2. If gcd(d, n) = 1, then

N(n, d) = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

If gcd(n, d) = qr(q prime, r ≥ 1), then

N(n, d) = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

+
∑ r

i=1
qi−1

qi T ( n

qi , d

qi )
− 1.

Example 1. We count the number of homogeneous rotation symmetric functions
with degree 5 over Fp (p ≥ 7,n ≥ 5). It is easily verified that all the solutions of
Ω(5, p, n) are as follows:

(5, 0, · · · , 0), (4, 1, 0, · · · , 0), (3, 2, 0, · · · , 0), (3, 1, 1, 0, · · · , 0),
(2, 2, 1, 0, · · · , 0), (2, 1, 1, 1, 0, · · · , 0), (1, 1, 1, 1, 1, 0, · · · , 0).

Therefore,



Enumeration of Homogeneous Rotation Symmetric Functions over Fp 283

(1) if d � n, then ∑NΩ

j=1
(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

= (n−1)!
(n−1)! + (n−1)!

(n−2)! + (n−1)!
(n−2)! + (n−1)!

2!(n−3)! +
(n−1)!

2!(n−3)! + (n−1)!
3!(n−4)! + (n−1)!

5!(n−5)! .

= (n−1)(n−2)(n−3)(n+16)
5! + (n2 − n+ 1)

Hence,
N(n, 5) = p

(n−1)(n−2)(n−3)(n+16)
5! +(n2−n+1) − 1.

(2) if d | n, then ∑NΩ

j=1
(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

+ d−1
d T (n

d , 1)

= (n−1)(n−2)(n−3)(n+16)
5! + (n2 − n+ 9

5 ).

Thus,
N(n, 5) = p

(n−1)(n−2)(n−3)(n+16)
5! +(n2−n+ 9

5 ) − 1.

4 Conclusion

In this paper, we investigated homogeneous rotation symmetric functions over
finite field Fp. We get a lower bound on the number of homogeneous rotation
symmetric functions by finding solutions of an equation system. And we also give
a formula to count homogeneous rotation symmetric functions when the greatest
common divisor of the number of input variables and the algebraic degree of
the function is a prime power, which partially solve the open problem in [7].
However, for general n, it is still an open problem to count the homogeneous
rotation symmetric functions.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
(No:60573028) and the open research fund of National Mobile Communications
Research Laboratory of Southeast University (No:W200805).

References

1. Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal
of Universal Computer Science 5(1), 20–31 (1999)

2. Stanica, P., Maitra, S.: Rotation symmetric Boolean functions-count and crypto-
graphic properties. In: Bose, R.C. (ed.) Centenary Symposium on Discrete Math-
ematics and Applications. Electronic Notes in Discrete Mathematics, vol. 15, pp.
139–145. Elsevier, Amsterdam (2002)



284 S. Fu, C. Li, and B. Sun

3. Stanica, P., Maitra, S.: A constructive count of rotation symmetric functions. Infor-
mation Processing Letters 88, 299–304 (2003)

4. Stanica, P., Maitra, S., Clark, J.: Results on rotation symmetric bent and correlation
immune Boolean functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 161–177. Springer, Heidelberg (2004)

5. Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions.
In: Second International Workshop on Boolean Functions: Cryptography and Ap-
plications, BFCA 2006, March 2006, pp. 137–156 (2006)

6. Maximov, A., Hell, M., Maitra, S.: Plateaued Rotation Symmetric Boolean Func-
tions on Odd Number of Variables. In: First Workshop on Boolean Functions: Cryp-
tography and Applications, BFCA 2005, LIFAR, March 7-9, 2005, pp. 83–104. Uni-
versity of Rouen, France (2005)

7. Li, Y.: Results on rotation symmetric polynomials over Fp. Information Sciences
Letters 178, 280–286 (2008)



Unconditionally Reliable Message Transmission
in Directed Hypergraphs

Kannan Srinathan2, Arpita Patra1,�, Ashish Choudhary1,��,
and C. Pandu Rangan1,���

1 Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in, rangan@iitm.ernet.in
2 Center for Security, Theory and Algorithmic Research

International Institute of Information Technology
Hyderabad India 500032
srinathan@iiit.ac.in

Abstract. We study the problem of unconditionally reliable message
transmission (URMT), where a sender S and a receiver R are part of
a synchronous network modeled as a directed hypergraph, a part of
which may be under the influence of an adversary having unbounded
computing power. S intends to transmit a message m to R, such that R
should correctly obtain S’s message with probability at least (1 − δ) for
arbitrarily small δ > 0. However, unlike most of the literature on this
problem, we assume the adversary modeling the faults is threshold
mixed, and can corrupt different set of nodes in Byzantine, passive
and fail-stop fashion simultaneously. The main contribution of this
work is the complete characterization of URMT in directed hypergraph
tolerating such an adversary, which is done for the first time in the
literature.

Keywords: Unbounded Computing Power, Unconditional Reliability.

1 Introduction

Consider a synchronous network, modeled as a directed hypergraph D = (P , E)
where P is the set of nodes and E ⊂ P × 2P is the set of directed hyperedges.
Some of the nodes in the network D are controlled by an adaptive1 thresh-
old mixed adversary A(tb,tp,tf ) which possesses unbounded computing power and

� Financial Support from Microsoft Research India Acknowledged.
�� Financial Support from Infosys Technology India Acknowledged.

��� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

1 An adaptive adversary corrupts the nodes dynamically during the protocol execu-
tion. The nodes to be corrupted may depend upon the information obtained by
the adversary so far during the protocol execution.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 285–303, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



286 K. Srinathan et al.

can corrupt disjoint set of tb, tp and tf nodes in Byzantine, passive and fail-stop
fashion respectively. In Unconditionally Reliable Message Transmission (URMT)
problem over D, a sender S ∈ P wishes to send a message m, chosen from a fi-
nite field F to the receiver R ∈ P (we assume that S and R are non-faulty),
such that R recovers m with probability at least (1 − δ), for arbitrarily small
δ > 0. If δ = 0, then the problem is called perfectly reliable message transmis-
sion (PRMT). Directed hypergraph is the most generic network model with the
facility of multicasting. In certain scenarios, private one-to-one channels may
not exist. Typical examples include Radio transmission and LAN network. Also
in many practical scenarios, a base station can broadcast to a set of receivers,
but the other way around communication might not be possible. In these cases,
directed hypergraph is the only way to model the network.

Intuitively, allowing small probability of error in the transmission should
result in improvements in the fault tolerance of PRMT. What exactly is the
improvement? We answer this question, considering the most generic network
model, namely directed hypergraph. The most natural questions in the context
of URMT over directed hypergraphs are: (a) Possibility: What is the neces-
sary and sufficient condition that a given directed hypergraph D should satisfy
for the possibility of URMT? (b) Does allowing a small probability of error in
the reliability of message transmission improves fault tolerance in the network?
(c) A directed hyperedge may be visualized as ”bunching up” a set of directed
(simple) edges. So given a directed hypergraph D, a digraph G can be obtained
from D by replacing each hyperedge with the corresponding ”bunch” of directed
edges. Now the natural question is: Does there exists a directed hypergraph D
such that URMT is possible over D but impossible over G? More precisely, do
hyperedges possess some special property/power in the context of URMT? In
the sequel, we try to answer these questions.

Existing Work: Considering hypergraph as underlying network model is not
quite common in literature. The problem of secure communication against Atp

in directed hypergraphs has been studied by Franklin et. al. [2]. Later Desmedt
et.al. [1] have characterized PRMT over hypergraphs tolerating Atb

.

Hypergraph Network Model and Threshold Mixed Adversary: We fol-
low the hypergraph network model as in [2]. A directed hypergraph is denoted
by D = (P , E). A typical directed hyperedge e can be written as e = (v, S),
where v ∈ P , S ⊆ (P \ v). We call v as the source node and the nodes in S
as the destination nodes of e. The hyperedge e enables node v to send message
to the nodes in S, identically. Even if v is corrupted and modifies (stops) the
information passing through it, every node in S identically receive the modi-
fied information (no information). The hyperedge e is directed since only v can
send messages to the nodes in S but the nodes in S cannot communicate among
themselves or to v using e. The hyperedge e is secure in the sense that any node
outside the set S ∪ {v} learns nothing about the information sent over e.

We consider an adaptive threshold mixed adversary A(tb,tp,tf ), who possesses
unbounded computing power and controls at most tb, tp and tf nodes in D in



Unconditionally Reliable Message Transmission in Directed Hypergraphs 287

Byzantine, passive and fail-stop fashion respectively. Once a node is corrupted,
it remains so throughout the protocol. If a node P is fail-stop corrupted then
the adversary can force P to crash at will at any time during the execution of
the protocol but can not access its internal data and can not force its behavior
to deviate from the protocol. So till P is alive, it honestly follows the protocol.
Also once P is crashed, it never becomes alive again. If a node P is passively
corrupted then P honestly follows the protocol but the adversary has full access
to internal data of P. If a node P is Byzantine corrupted then the adversary has
full access to the internal data of P and can force P to deviate from the protocol
arbitrarily. We assume that A(tb,tp,tf ) acts in a ”centralized” fashion and colludes
among different corrupted nodes through “back channels”. So, A(tb,tp,tf ) can
listen information from at most (tb + tp) nodes and can pool all the information
observed/obtained at these tb + tp nodes in any manner in its local computation.

Why Mixed Adversary ?: In a typical large network, certain nodes may be
strongly protected and few others may be moderately/weakly protected. An
adversary may fail-stop(/eavesdrop in) a strongly protected node, while he may
affect in a Byzantine fashion a weakly protected node. Thus, we may capture
the abilities of an adversary in a more realistic manner using tb, tp and tf where
tb, tp, tf are the number of nodes under the influence of Byzantine, passive and
fail-stop adversary, respectively. Even in practical scenario, when a hacker takes
control of a router, it can disrupt the communication in variety of ways. So
studying mixed adversary is well motivated.

Our Contribution, Significance and Impact: In this paper, we completely
characterizeURMT over an arbitrary directed hypergraphD toleratingA(tb,tp,tf ).
Working out a direct characterization of URMT over D, tolerating A(tb,tp,tf ) is
highly un-intuitive. Hence, we use the following framework to solve the problem:

Contribution 1. We propose a method which takes a directed hypergraph D,
along with A(tb,tp,tf ) and outputs a corresponding digraph Dunder, which we
call as ”underlying digraph” of D, along with a non-threshold mixed adversary
Aunder, such that URMT over D tolerating A(tb,tp,tf ) is possible iff there exists
a “special type of URMT” protocol in Dunder tolerating Aunder.

Contribution 2. We then characterize URMT in Dunder tolerating Aunder and
give modifications on it to arrive at the characterization of special type of URMT
on Dunder. This along with Contribution 1 completes the characterization of
URMT on D, tolerating A(tb,tp,tf ).

In the sequel we provide affirmative answers to the following questions by demon-
strating examples: (a) Does randomization help in more fault tolerance? (b) Does
hyperedges help in the possibility of URMT? (c) Does passive corruption affect
reliable communication? Consider the hypergraphD in Fig. 1 under the influence
of A(1,0,0), where tb = 1 and tp = tf = 0. We can say the following regarding
D which essentially shows the power of allowing negligible error probability: (a)
From [1], PRMT (URMT with δ = 0) over D tolerating A(1,0,0) is impossible.
(b) URMT over D tolerating A(1,0,0) is possible and feasible.



288 K. Srinathan et al.

Claim. URMT over D tolerating A(1,0,0) is possible and feasible.

Proof: Consider the following URMT protocol over D. A selects three random
values (keys) from finite field F, say K1,K2, and K3. A sends the keys to S and
R through the hyperedge (A, {S,R}). Since (A, {S,R}) is an hyperedge, both
S and R receives the same set of keys or gets nothing. If S receives the keys,
he authenticates the message m by computing a two tuple (K1 +m,K2(K1 +
m) +K3) and sends it through the path (S, B,R). S also sends the message m
over both the paths (S, B,R) and (S, A,R). Now if R does not receive any key
from A, he detects A to be faulty and accepts the message from path (S, B,R).
Otherwise, R receives the authenticated tuple say (c, d) over path (S, B,R) and
the keys from A with which R checks d ?= K2c + K3. If the test passes then
R takes c−K1 as the message, else R knows node B is faulty and accepts the
message from path (S, A,R). The proof of correctness of the protocol is similar
to the information checking protocol of [3]. It can be shown that except with
probability δ = 1

|F| , R outputs m′ = m [3]. Now by setting |F| to be arbitrarily
large, we can reduce the error probability to an arbitrarily small quantity. �

Next we show that unlike PRMT, hyperedges do help in the possibility of
URMT. A very straight-forward implication that can be drawn from the char-
acterization of PRMT in directed hypergraph against Atb

, stated in [1], is that,
replacing every hyperedge of a hypergraph by a collection of underlying simple
directed edges does not affect the possibility of PRMT over the hypergraph. This
means there does not exist a hypergraph such that PRMT is possible on it but
is impossible in the digraph obtained from the hypergraph. However consider
the hypergraph D in Figure 1 and its corresponding directed graph G, which is
obtained from D by replacing each hyperedge by its underlying simple directed
edges. From the previous claim, URMT is possible in D tolerating A(1,0,0). How-
ever, from [4], URMT is impossible in G tolerating A(1,0,0). Thus we conclude
that hyperedges do help in the possibility of URMT but not PRMT.

One of the long-standing and intuitive belief is that “passive corruption does
not affect reliable communication”. We contradict the belief by an example for
URMT in directed hypergraph. In Figure 1, let D be under the control of A(1,1,0),

AA

S

B

RS

B

R

D = (P , E) P = {S, A, B, R}
E = {(S, {A}), (A, {R}), (A, {S, R}, (S, {B}),

G: Obtained from D by replacing the six hyperedges
by corresponding directed edges.

(B, {R}), (B, {S, R})}

Fig. 1. Example of network illustrating the power of hyperedges with respect to URMT



Unconditionally Reliable Message Transmission in Directed Hypergraphs 289

where tb = tp = 1 and tf = 0. Let A be passive corrupted and B be Byzantine
corrupted; then the protocol in previous claim will not work. The reason is that
adversary always gets the keys which A sends to S and R (by eavesdropping A).
Specifically A(1,1,0) can use the information he eavesdrop at A, to corrupt the
values appropriately at B, in such a way that the tuple along the path (S, B,R)
passes the authentication test. Thus an adversary can very effectively use the
information obtained from the passively corrupted nodes at the nodes which he
is controlling in a Byzantine fashion and affect the reliability of the protocol.

1.1 Digraph Network Model and Non-threshold Adversary

We now give few definitions related to digraph network model and non-threshold
adversary, which are used in subsequent sections. A directed network is modeled
as a digraph N = (P,E) where P is the set of nodes and E denotes the set of arcs
in the digraph. The network is assumed to be synchronous, that is, any protocol
is executed in a sequence of rounds wherein in each round, a node can send
messages to it’s out-neighbors, receive the messages sent in that round by it’s
in-neighbors and perform some computation on the received messages. A non-
threshold adversary structure is an enumeration of all the possible “snapshots”
of faults in the network. A single snapshot can be described by an ordered
triple (B,E, F ), where B,E, F ⊆ P and B, E and F are pairwise disjoint, and
denotes the set of Byzantine, passive and fail-stop corrupted nodes. An adversary
structure is a collection of such triples. The adversary structure is monotone in
the sense that if (B1, E1, F1) ∈ A , then ∀(B2, E2, F2) such that B2 ⊆ B1 and
E2 ⊆ E1 and F2 ⊆ F1, (B2, E2, F2) ∈ A. During the execution of the protocol,
any one set from A would be active and the nodes from that set will be under the
control of adversary throughout the protocol. Any A can be uniquely represented
by listing the elements in its maximal basis which we define below:

Definition 1 (Maximal Basis). For a monotone adversary structure A, its
maximal basis Ā is defined as Ā = {(B,E, F )|(B,E, F ) ∈ A, and � ∃(X,Y, Z) ∈
A such that (X,Y, Z) �= (B,E, F ) where X ⊇ B, Y ⊇ E and Z ⊇ F}.

Definition 2 (Strong Path). A sequence of vertices (v1, v2, v3, . . . , vk) is said
to be a strong path from v1 to vk in digraph N = (P,E) if for each 1 ≤ i <
k, (vi, vi+1) ∈ E. We assume that (vi,vi) is a strong path from vi to itself.

Definition 3 (Semi-Strong Path). A sequence of vertices (v1, v2, v3, . . . , vk)
is said to be a semi-strong path from v1 to vk if there exists j, 1 ≤ j ≤ k such that
the sequence vj to v1 as well as the sequence vj to vk are both strong paths. Vertex
vj is called the head of the semi-strong path. Any strong path can be viewed as
a semi-strong path. For example, the path (S, XV ir

e5
,R) in graph Dunder in Fig.

2 is a semi-strong path between S and R, where XV ir
e5

is the head.

Definition 4 (Authentication Function). Let K1,K2,K3 ∈ F−{0} and m ∈
F. Then auth(m,K1,K2,K3) = (K1 +m,K2(K1 +m) +K3).

Suppose a random triplet (K1,K2,K3) ∈ F3 − {(0, 0, 0)} is correctly established
between S and R. For a message m, let S computes auth(m,K1,K2,K3) and



290 K. Srinathan et al.

sends it to R through a strong path, over which some of the nodes could be
under the control of the adversary. If the adversary does not know m,K1,K3
and K3 in advance, then auth satisfies the following two important properties:
(a) Even if adversary learns auth(m,K1,K2,K3), m will remain unknown to the
adversary. (b) If the adversary changes auth(m,K1,K2,K3) to some other value,
then except with an error probability of at most 1

|F| , R will be able to detect it.
The proof of both the properties is similar to the proof of information checking
protocol of [3] and hence is omitted.

2 Characterization for URMT in Directed Hypergraph

Here we characterize URMT on arbitrary directed hypergraphs tolerating
A(tb,tp,tf ).

Definition 5 (Underlying Digraph). Given a directed hypergraph D = (P , E)
we define the underlying digraph Dunder = (P ′, E ′) of D as follows: P ′ = (P ∪V)
is the set of nodes (real nodes and virtual nodes). We replace each hyperedge
e = (v, {vj1 , vj2 , . . . , vjα}) ∈ E, α ≥ 1, with a virtual player XV ir

e ∈ V and the
arcs (v,XV ir

e ), (XV ir
e , vj1), (XV ir

e , vj2), . . . , and (XV ir
e , vjα) in E ′.

A hypergraph, along with its corresponding digraph Dunder is given in Fig. 2.
The intuition behind our definition is that for every hypergraph D influenced

by A(tb,tp,tf ), there exists a corresponding digraph Dunder and non-threshold
mixed adversary Aunder, such that URMT over D tolerating A(tb,tp,tf ) is possible
iff a “special type of URMT” over Dunder tolerating Aunder is possible. We begin
by defining this ”special” kind of URMT protocol called URMTspecial.

Definition 6 (URMTspecial). A URMT protocol over a digraph Dunder = (P ∪
V , E ′) is called URMTspecial, if in that protocol, the programs delegated to each
of the virtual players (i.e., the players in V) is known to all and is deterministic.

A

S

B

R S

A

R

BHypergraph D = (P , E), where P = {S, A, B, R}
and E = {e1, e2, e3, e4, e5, e6}
with e1 = (S, {A}), e2 = (A, {R}),

e3 = (S, {B}), e4 = (B, {R}),
e5 = (A, {S, R}), e6 = (B, {S, R})

Dunder = (P′, E′),P′ = P ∪ V ,

V = {XV ir
e1

, XV ir
e2

, XV ir
e3

, XV ir
e4

, XV ir
e5

, XV ir
e6

}
denotes virtual nodes from the set V

XV ir
e2

XV ir
e4

XV ir
e3

XV ir
e1

XV ir
e6

XV ir
e5

Fig. 2. A directed hypergraph D and it’s corresponding Dunder



Unconditionally Reliable Message Transmission in Directed Hypergraphs 291

Definition 7 (Aunder). Let D = (P , E) be a arbitrary directed hypergraph under
the influence of A(tb,tp,tf ). Also let Dunder = (P ′, E ′) be the underlying digraph
of D. The non-threshold mixed adversary Aunder over Dunder, corresponding to
A(tb,tp,tf ) in D is defined as:

Aunder =

⎧⎪⎨⎪⎩(B,E, F )

∣∣∣∣∣∣∣
|B ∩ P| ≤ tb, (B ∩ V) = ∅, |F ∩ P| ≤ tf , (F ∩ V) = ∅,
E = Ereal ∪ Evir, |Ereal ∩ P| ≤ tp, (Evir ∩ P) = ∅,

Evir =
{

ν ∈ V
∣∣∣∣there exists a player x ∈ (B∪Ereal) such that
either (x, ν) or (ν, x) is an arc in Dunder

}
To construct an element (B,E, F ) ∈ Aunder, we first select a possible combina-
tion of disjoint set of tb, tp and tf nodes from P (set of physical nodes) and
assign them to B, Ereal and F respectively. Now Evir is constructed by adding
the virtual nodes XV ir

e corresponding to hyperedge e = (v, {vj1 , vj2 , . . . , vjα})
such that at least one of the nodes v, vj1 , vj2 , . . . , vjα ∈ (B ∪ Ereal). Finally
E = Ereal ∪ Evir . We now have the following theorem:

Theorem 1. URMT in a directed hypergraph D tolerating A(tb,tp,tf ) is possible
iff URMTspecial is possible over Dunder tolerating Aunder.

Proof: If part: Let Π ′ be a URMTspecial protocol from S to R over Dunder tol-
erating Aunder. We now construct a URMT protocolΠ in D tolerating A(tb,tp,tf ),
using Π ′. In protocol Π ′, the virtual players run a deterministic program. Thus,
if in Π ′ some message m is sent by v ∈ P to XV ir

e ∈ V who then forwards the
respective outputs to all his out-neighbors, the same may be exactly simulated
by v just using m and the code of XV ir

e to compute the outputs of all the out-
neighbors of XV ir

e , say µ1, µ2, . . . , µk (if there are k out-neighbors of XV ir
e ) and

respectively sending µj to the jth out-neighbor routed through XV ir
e (this kind

of simulation is possible since the code run by XV ir
e is deterministic and known

to all). This in turn is equivalent to the real player v sending all the respective
outputs µ1, µ2, . . . , µk to all the out-neighbors via the hyperedge in D and each
out-neighbor picking-up only what is due to him. Note that this step works be-
cause of the way in which we have defined the adversary structure Aunder —
we said that if adversary can read the memory of either the source node or one
of the destination nodes of e = (v, {vj1 , vj2 , . . . , vjk

}), then the adversary can
also read XV ir

e ’s memory itself. Consequently, we may assume that all data in
XV ir

e ’s memory may be safely sent to all his out-neighbors without affecting the
correctness of the simulation. It is evident that the view of the adversary as well
as the out-neighbors is the same in both the original and the simulated versions.

Only if part: Suppose there exists a URMT protocol Π in the directed hyper-
graph D. We now show that a URMTspecial protocol Π ′ in the digraph Dunder

exists. This can be seen as follows — we simulate a send of a value m along
a hyperedge e = (v, {{vj1 , vj2 , . . . , vjk

}) in the protocol Π over D by sending
the value m first from v to the virtual player corresponding to the hyperedge e,
namely, XV ir

e , who then forwards it to the receivers vj1 , vj2 , . . . , and vjk
in the

protocol Π ′ over the network Dunder. Hence the theorem holds. �



292 K. Srinathan et al.

So according to Theorem 1, our next concern is to characterize URMTspecial

over Dunder tolerating Aunder . For that, in the next section, we first character-
ize URMT in arbitrary digraphs tolerating non-threshold mixed adversary. This
gives the necessary and sufficient condition for the existence of a URMT protocol
over Dunder tolerating Aunder. Now, the only reason why a URMT protocol may
exist in Dunder but a URMTspecial protocol does not exist is that in Dunder

there are some virtual players which can not act as a physical node (e.g. can not
do random coin toss etc.). The modification required to obtain the characteri-
zation of URMTspecial in arbitrary digraphs (Dunder) from the characterization
of URMT in arbitrary digraphs (Dunder) is described in section 7.

3 URMT in Digraphs Tolerating Non-threshold
Adversary

We now characterize URMT in an arbitrary digraph tolerating an arbitrary
non-threshold adversary A. We first prove the following:

Theorem 2. URMT in a digraph N tolerating a non-threshold adversary A is
possible iff URMT is possible in N tolerating any A ⊆ A with |Ā| = 2.

Proof (sketch): Necessity is obvious. For sufficiency, we show that if URMT
is possible in N tolerating any A ⊆ A with maximal basis Ā of size two, then
URMT is also possible in N tolerating any A ⊆ A with maximal basis of size
three. Then using induction, we show that it is possible to design URMT in N
tolerating entire A. For complete proof, see [5]. �

Theorem 2 shows that in order to get a complete characterization of URMT
tolerating entire A, it is enough if we characterize URMT tolerating every A ⊆ A
with |Ā| = 2. This is our main concern in the rest of the paper.

4 A Sufficient Condition for URMT Tolerating A ⊆ A
with |Ā| = 2

Theorem 3. Let N = (P,E) be a digraph under the influence of A with max-
imal basis A = {(B1, E1, F1), (B2, E2, F2)}. Suppose N is such that for each
α ∈ {1, 2}, there exists a strong path (not necessarily distinct) pα from S to
R, avoiding nodes from (Bα ∪ Fα). Furthermore, there exists a strong path q
(not necessarily distinct from pα’s) from S to R in N which avoids nodes from
(B1 ∪B2 ∪ (F1 ∩ F2)). Then there exists an URMT protocol tolerating A.

Proof: According to the conditions of the theorem, there exists three strong
paths p1, p2 and q (not necessarily distinct) from S to R in N , such that p1
avoids nodes from (B1 ∪ F1), p2 avoid nodes from (B2 ∪ F2) and P avoid nodes
from (B1 ∪B2 ∪ (F1 ∩ F2)). To reliably transmit a message m, S sends m along
p1, p2 and q. Each intermediate node u along these paths forwards the message
that it received to the corresponding neighbor. If nothing is received by the
time something should have been received (since the network is synchronous,



Unconditionally Reliable Message Transmission in Directed Hypergraphs 293

strict time-out conditions are feasible) then it forwards a new message namely
“Null-from-u” to its neighbor. R now recoversm as follows: If R receives a valid
message x along path q then x = m because q is free from both B1 and B2. If
a “Null-from-u” message is received along q, then if u’s predecessor node in q
belongs to F1, then R outputs the message that is (guaranteed to be) received
along path p1. Else if u’s predecessor node in q belongs to F2, then R outputs the
message that is (guaranteed to be) received along path p2. However, if nothing
is received along path q and if the R’s predecessor in q belongs to F1, then R
outputs the message that is (guaranteed to be) received along path p1, else R
outputs the message that is (guaranteed to be) received along path p2. �

Definition 8. We call the URMT protocol given in Theorem 3 as protocol Π.

4.1 Relaxing the Sufficiency Condition of Theorem 3

According to Theorem 3, if the paths p1, p2 and q are present in a network
N , then URMT is possible over N . Now the question is whether the physical
presence of the paths are necessary in N ? However, we now show that even
in the absence of q, one can design URMT over N tolerating Ā, provided the
effect of q can be simulated over N ! This is possible provided N satisfies certain
conditions with respect to Ā.

Example 1: Consider the network in Fig. 3, along with the adversary Ā. In
N , path p1 = (S, L,M,R) is free from the nodes in (B1 ∪ F1), and path p2 =
(S, H, I,K,R) is free from the nodes in (B2 ∪F2). However, there does not exist

B
A

S R

C

H I K

D

E

F

ML

B1 F1 E2

F1

E2 F1

B2 F2

F2

E1

A = {(B1, E1, F1), (B2, E2, F2)}

Network N under the influence of A

B1 = {H}, E1 = {F}, F1 = {I, C, D}

B2 = {L}, E2 = {K, B}, F2 = {E, M}

Fig. 3. Network N updated to N1

any strong path
q which is free
from the nodes
in (B1 ∪ B2 ∪
(F1 ∩ F2)). So
N does not com-
pletely satisfy all
the conditions of
Theorem 3 with
respect to the Ā.
However, the ef-
fect of q can be
simulated in N .

Consider the sub-portion of N with strong path (S, H, I,K,R) and semi-
strong path (S, C,B,A,D,E, F,R) (with head A). Now consider the following
sub-protocol called Πsim

1 executed over this sub-portion to send a value s ∈ F
from S to R: First, A sends three random secret keysK1,K2,K3 ∈ F to S via the
strong path (A,B,C,S). If A does not receive all the keys, he uses three random
keys of his own choice instead. A then sends (x, y) = auth(s,K1,K2,K3) along
strong path (S, H, I,K,R) to R. Now, A sends the same three keys (namely
K1,K2 and K3) to R along the strong path (A,D,E, F,R). Note that A sends
the keys to R only after S has sent the authenticated message (namely (x1, y1))



294 K. Srinathan et al.

along the strong path to R. This can be done because the system is synchronous
and the protocol is executed in rounds.

If R does not receive the keys from A, then R knows the identity of the
set in A that is corrupt because the strong path from A to R contains nodes
from F ∗

1 and F ∗
2 . Similarly, if R does not receive any value from S along the

strong path (S, H, I,K,R), then R can easily conclude that the first set in A is
corrupted. However, if R receive the keys along (A,D,E, F,R) and tuple (x′, y′)
along (S, H, I,K,R), then R verifies y′ ?= x′K2 +K3. If yes, then R outputs the
message (x′ −K1); else, R concludes that first set in A is corrupted.

If the second set (B2, E2, F2) of A is corrupted, then the adversary will know
K1,K2,K3 (when A sends them to S). But there is no node from B2 along the
strong path from S to R. So, the authenticated message will reach correctly to
R. Since there are no nodes from B2 along the strong path from A to R, R will
either correctly receive the keys or it will not receive any key, depending upon
whether the node E crashes or not. If it crashes, then R will not receive any
key but will know that second set in A is corrupted. On the other hand, if R
receives the keys from A, then they are correct and so the verification step at
R’s end will succeed and R will correctly output s.

If the first set (B1, E1, F1) of A is corrupted, then adversary will also know
the keys by passively listening node F . But in the protocol, A sends the keys
to R, only after the authenticated message reaches to R through the strong
path (S, H, I,K,R). So the node H , which is B1 type corrupted will not know
the keys when the authenticated message passes through H . Hence the delay
done by A in sending the keys to R plays a very significant role in the sub-
protocol. In essence, the node from B1 on path (S, H, I,K,R) can not change
the authenticated message in a consistent manner without being detected by
R with very high probability. Now similar to information checking protocol of
Rabin [3], adversary can forge the authenticated message with probability 1

|F| ,
without knowingK1,K2,K3. Once the authenticated tuple reaches R, adversary
will also know the keys which A sends to R. So now from the authenticated
tuple which passed through H and the keys which passed through the node F ,
adversary can compute m. But now he cannot change it, as R already have
either recovered m (if the authenticated tuple is received correctly) or knows
that the first set in A is corrupted.

Thus, what the above sub protocol achieves is the following: R’s output which
could be either a valid message or a null message with the knowledge of the
identity of the set in A which is actually corrupted, is controlled by the ad-
versary who knows the message s. Moreover, if R receives a valid message,
it is indeed the correct message with a very high probability. This is identi-
cal to saying that S, with a very high probability, sends a message to R
through nodes that are in F1, E1, F2 and E2 respectively. Thus Πsim

1 has the
effect of simulating a ”virtual path” between S and R with very high prob-
ability. So N in Fig. 3 can be enhanced to network N1 under the influence
of Ā1 as shown in Fig. 4 where in N1, there exists a ”virtual path” between
S and R, containing intermediate virtual nodes X1, X2, X3 and X4, where



Unconditionally Reliable Message Transmission in Directed Hypergraphs 295

X1 ∈ F1, X2 ∈ E1, X3 ∈ F2 and X4 ∈ E2 respectively. Now note that N1
satisfies the conditions of Theorem 3 with respect to Ā1, where the virtual
path (S, X1, X2, X3, X4,R) serves as path q. So the URMT protocol Π (of
Theorem 3) can be executed over N1 tolerating Ā. But we want to design an

B
A

S R

C

H I K

D

E

F

ML

X1

X2

X3

X4

B1 F1 E2

F1

E2 F1

B2 F2

F2

E1

A1 = {(B′
1, E

′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}

Network N1 under the influence of A1

F ′
1

E ′
1

F ′
2

E ′
2

B′
1 = {H}, E ′

1 = {F, X2}
F ′

1 = {I, C, D, X1}

B′
2 = {L}, E ′

2 = {K, B, X4}
F ′

2 = {E, M, X3}

Fig. 4. Network N updated to N1

URMT pro-
tocol over N
which is the
given physical
graph. So we
have to sim-
ulate the
URMT pro-
tocol Π exe-
cuted over N1
tolerating Ā,
into an
URMT pro-
tocol over N tolerating Ā1. Our next goal is to demonstrate that simulation.
Any value which is sent over p1 or p2 in Π over N1 can be also sent over
the same paths in N . Similarly, any value which is sent over the virtual
path (S, X1, X2, X3, X4,R) in Π over N1 can be also sent in N by using the
sub-protocol Πsim

1 . 2 Thus all the steps of Π over N1 can be simulated over N
also. If the error probability of sub-protocol Πsim

1 is δ′ (which is at most 1
|F|),

then the error probability of the protocol Π simulated over N is at most nδ′,
where n is the number of times sub-protocol Πsim

1 is executed. So we can make
the error probability of resultant URMT protocol over N to be at most δ, by
appropriately selecting |F| so that nδ′ = δ.

Summary of the example: In Example 1, we demonstrated a graph which
contains a ”special structure” (which satisfied some ”special properties” with
respect to Ā). This structure lead to the simulation of a special type of ”vir-
tual path” in the original network. Also, though not demonstrated, the ”virtual
path(s)” could be added recursively. Finally, the enhanced graph, with virtual
path added, satisfies conditions of Theorem 3 and hence we could simulate Π on
enhanced graph. So the idea is that starting from a physical graph, we find the
special structures (recursively) and keep on enhancing the graph (step by step
through some intermediate graphs) until no more special structure is present
on the (enhanced) graph. The final enhanced graph is named as URMT-BEF-
Closure-Digraph of the original graph (see next section for the formal defi-
nition). If URMT-BEF-Closure-Digraph satisfies conditions of Theorem 3,
then URMT protocol Π exists on the Closure graph. The protocol Π can be
run on the physical (original) graph using the sub-protocols that simulate the
respective virtual paths present in URMT-BEF-Closure-Digraph.

2 Note that each time an independent random triplet of keys are used to execute the
sub-protocol Πsim

1 .



296 K. Srinathan et al.

5 Definition of URMT-BEF-Closure-Digraph

Definition 9 (URMT-BEF-Closure-Digraph). Let N = (P,E) be a digraph
influenced by a non-threshold adversary A with A = {(B1, E1, F1), (B2, E2, F2)}.
We inductively define a sequence of networks N1,N2 . . . where the set of vertices,
denoted by Pi, of the network Ni is defined as Pi = P ∪ Vi with V1 = ∅ and the
set of edges, say Ei, of the network Ni is defined as Ei = E∪Ai with A1 = ∅. The
set Vi denotes the set of virtual nodes in Ni, while Ai denotes the set of virtual
edges in Ni. We also define a corresponding sequence of adversary structures
with maximal basis of two elements each, viz., A1,A2, . . ., where A1 = A. The
details are as follows:

The network Ni, i ≥ 2 can be constructed from the network Ni−1 in four
different ways by applying one of the constructions from Table 1. In the table, a
typical entry like

#n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A → X1 →
X2 → X3 →
X4 → B
where
X1 ∈
F1,X2 ∈ F2,
X3 ∈ E1,
X4 ∈ E2

∣∣∣∣∣∣∣∣∣∣∣

• Head → A: avoids nodes from ((B1 ∪ B2 ∪
F2 ∪ E1) \ {A, B}) with condition Q1

• Head → B avoids nodes from ((B1 ∪ B2 ∪
(F1 ∩ F2)) \ {A, B})
• A → B avoids nodes from ((B2∪(F1∩F2))\
{A, B}) with condition Q2

∣∣∣∣∣∣∣∣∣∣
y

A B

F ∗

1 , F ∗

2

E1, E2
E2, F ∗

1

B1, F ∗

1 , E1, F ∗

2 , E2

means the following:
“In the nthway of construction, we could potentially add a virtual

path with four new virtual nodes X1, X2, X3 and X4 and five new vir-
tual edges to Ni−1 to obtain Ni. Specifically, we add directed edges
(A,X1), (X1, X2), (X2, X3), (X3, X4) and (X4, B) if and only if the digraph
Ni−1 = (Pi−1,Ei−1) is such that there exists two physical nodes A,B in Ni−1,
such that for the two elements (B1, E1, F1) and (B2, E2, F2) in Ai−1, both the
following (1 and 2) are true:

1. there does not exist four nodes w1 ∈ (Vi−1 ∩ F1), w2 ∈ (Vi−1 ∩
F2), w3 ∈ (Vi−1 ∩ E1) and w4 ∈ (Vi−1 ∩ E2) such that the edges
(A,w1), (w1, w2), (w2, w3),
(w3, w4) and (w4, B) belong to Ei−1. This means nth construction has not
been already used for nodes A and B. This is interpreted by the second col-
umn of the entry.

2. Both the following (a and b) hold:
(a) there exists a semi-strong path, say q with head y from A to B in Ni−1,

such that the strong path from y to A avoids nodes from ((B1∪B2∪F2∪
E1) \ {A,B}) and satisfies condition Q1 (possibly null). Similarly, the
strong path from y to B avoids nodes from ((B1∪B2∪(F1∩F2))\{A,B}).
This is interpreted by the first two bulleted items in the third column.

(b) there exists a strong path, say p from A to B in Ni−1, such that p avoids
nodes from ((B2∪ (F1∩F2))\{A,B}). The path p satisfies the condition
Q2 (possibly null). This is the interpretation of the third bulleted item
in the third column. Further in addition to Q2, the following condition



Unconditionally Reliable Message Transmission in Directed Hypergraphs 297

must always be satisfied by p: for each i ∈ {1, 2}, every occurrence of a
node from (Bi ∪ Fi) \ {A,B} (if any) in p is after the last occurrence
of a node from Bi \ {A,B} (if any), where if i = 1 (i = 2), then i = 2
(i = 1). Though not stated in the entry, the last condition should be
always satisfied by the strong path(s) from A to B in all the constructions.

If one of the above two conditions (1 and 2) fails, we continue to work with
Ni−1 influenced by Ai−1. However, if both of them are true, then we let Vi =
Vi−1 ∪ {X1, X2, X3, X4} which implies that Pi = Pi−1 ∪ {X1, X2, X3, X4}; and
we let Ai = Ai−1∪{(A,X1), (X1, X2), (X2, X3), (X3, X4), (X4, B)} which implies
Ei = Ei−1 ∪ {(A,X1), (X1, X2), (X2, X3), (X3, X4), (X4, B)}; finally we let the
new nodes X1, X2, X3 and X4 to be added to F1, F2, E1 and E2 respectively.
That is, if Ai−1 = {(B1, E1, F1), (B2, E2, F2)}, then we let Ai = {(B1, E1 ∪
{X3}, F1∪{X1}), (B2, E2∪{X4}, F2∪{X2})}.” The figure in the fourth column
of the entry denotes the complementary view of the conditions specified in the
third column of the entry. The labels along the edges of the figure denote the the
set of allowable adversarial nodes along the semi-strong path and strong path(s)
between A and B. For example, in the figure, we have put sets E2 and F ∗

1 along
the edge y → A which means that the nodes along the strong path from y to A
can be completely honest (denoted by H) or may contain nodes from sets E2 and
F ∗

1 , where F ∗
i = Fi \ (F1 ∩ F2), i ∈ {1, 2}.

Remark 1. A pair of vertices (A,B) may permit at most twenty-four augmen-
tations, corresponding to one of the constructions from Table 1. When no aug-
mentation is possible, we stop the process. Thus, starting from N1, if we build
a sequence of distinct networks N1,N2, · · · ,Nν through the augmenting process,
we observe that ν ≤ 24

(
n
2

)
, where n = |P| denotes the set of nodes in N . Also,

we may consider the pairs of vertices in any order and augmentation may also be
done in any order for a given pair of vertices. The URMT-BEF-closure-digraph
of N , denoted by N ∗

URMTBEF
is defined as N ∗

URMTBEF
= Nν . The corresponding

adversary structure is A∗ = Aν , where |Ā∗| = 2.

An illustration of constructing URMT-BEF-Closure-Digraph is given in [5]. We
now informally mention few properties of the constructions.

Property 1 (Principle Behind the Constructions). In general, if Ni−1 is aug-
mented to Ni by applying some construction to A,B in Ni−1 and if some value
s is sent over the resultant virtual path from A to B in Ni, then there always ex-
ist a sub-protocol Πsim (as demonstrated in Example 1), which when executed
over Ni−1 has one of the following outcomes: (a) Πsim correctly sends s from A
to B over Ni−1 with negligible error probability, as demonstrated in Example
1; (b) Πsim may fail to send s, in which case it facilitates B to correctly know
the exact identity of the corrupted set, as demonstrated in Example 1. The
basic format of the sub-protocol Πsimulate will be more or less same for all the
constructions (as shown in Example 1). We do not provide the Πsim protocol
for every construction given in Table 1 due to space constraint.

Lemma 1. N ∗
URMTBEF

is finite and is unique (up to isomorphism).



298 K. Srinathan et al.

Proof: Finiteness follows from Remark 1. The proof of uniqueness property is
similar to the proof of Lemma 2 in [6] 3. �

Property 2 (Property of A∗). If Ā = Ā1 = {(B1, E1, F1), (B2, E2, F2)} and Ā∗ =
{(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}, then we have B′

1 = B1, B
′
2 = B2, (F ′

1 ∩ F ′
2) = (F1 ∩

F2) and (E′
1 ∩E′

2) = (E1 ∩E2). This is because the Bi’s are never changed and
no new virtual node is simultaneously added to both the fail-stop sets or both
the passive sets at any stage in any of the constructions.

6 Characterization of URMT Tolerating A with |Ā| = 2

We now give first ever true characterization of URMT in an arbitrary digraph
N tolerating an adversary structure A with |Ā| = 2, in terms of N ∗

URMTBEF
.

Theorem 4. Let N = (P,E) be a digraph. Let N be under the influence of a
non-threshold adversary A with Ā = {(B1, E1, F1), (B2, E2, F2)}. Furthermore,
let N ∗

URMTBEF
= (P∗,E∗) denotes the URMT-BEF-closure-digraph of network

N with respect to A. Moreover, let N ∗
URMTBEF

be under the control of A∗ where
A∗ is the adversary closure of A with Ā∗ = {(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}. Then

URMT between S and R is possible in N tolerating A iff (a) for each α ∈ {1, 2},
there exists a strong path (not necessarily distinct) pα from S to R in N avoiding
nodes from (Bα∪Fα) and (b) there exists a strong path P (not necessarily distinct
from pα’s) from S to R in N ∗

URMTBEF
, avoiding nodes from (B′

1∪B′
2∪(F ′

1∩F ′
2)).

Proof: Sufficiency: In order to prove the sufficiency of the Theorem 4, we
begin with a definition.

Definition 10 (URMTforward). An URMT protocol over digraph Ni = (P ∪
Vi,E ∪ Ai) is called an URMTforward protocol, if in the protocol, the virtual
nodes (nodes in Vi) are capable of only receiving and forwarding messages and
do no other computation; i.e., they do not use any internal random coins.

In order to prove the sufficiency of the Theorem 4, we first show that if the
conditions of Theorem 4 are satisfied, then we can design an URMTforward

protocol over N ∗
URMTBEF

tolerating Ā∗ (Lemma 2). We then show that if there
exists an URMTforward protocol over Ni for i > 1 tolerating Āi, then there
exists an URMTforward protocol over Ni−1 tolerating Āi−1 (Lemma 3). Now
any URMTforward protocol over the original graph N = N1 is actually an
URMT protocol over N . Since N ∗

URMTBEF
is finite and unique (see Lemma 1),

sufficiency of Theorem 4 follows from Lemma 2 and Lemma 3.

Lemma 2. If the conditions of Theorem 4 are satisfied, then there exists an
URMTforward protocol in N ∗

URMTBEF
tolerating Ā∗.

Lemma 3. For any i > 1, there exists an URMTforward protocol in Ni toler-
ating Āi iff there exists an URMTforward protocol in Ni−1 tolerating Āi−1.
3 In [6], the authors have given the construction of closure graph by considering only

Byzantine adversary. The constructions given here can be viewed as non-trivial
generalization of the constructions given in [6].



Unconditionally Reliable Message Transmission in Directed Hypergraphs 299

Please see the full version of the paper [5] for the proofs of above two lemmas.
Now the proof of sufficiency of the Theorem 4 follows from the Lemma 1, 2
and 3. We now proceed to prove the necessity part of the Theorem 4.

Necessity (sketch): The necessity of path pα in N is obvious. The necessity of
path P in N ∗

URMTBEF
is proved by contradiction. Suppose there exists an URMT

protocolΠ∗ in N ∗
URMTBEF

(and hence in N ) tolerating Ā∗ even in the absence of
path P in N ∗

URMTBEF
. Since P does not exist, it implies that each of the strong

paths from S to R in N ∗
URMTBEF

contain nodes from (B′
1 ∪ B′

2 ∪ (F ′
1 ∩ F ′

2)).
We now divide the set of nodes (virtual + physical) in N ∗

URMTBEF
as follows:

let Y1 be the set of all nodes that have a strong path to R in N ∗
PPSMTBEF

that
does not use any vertex from (B′

1 ∪ B′
2 ∪ (F ′

1 ∩ F ′
2)). Furthermore, let X1 =

P∗ \ (B′
1 ∪ B′

2 ∪ (F ′
1 ∩ F ′

2) ∪ Y1). Clearly, R ∈ Y1 and S ∈ X1. Moreover, it is
evident from the definition of Y1 that there are no edges from any node in X1
to any node in Y1. The necessity of P is now proved in two parts:

1. We first show that if there are no reverse path(s) from the node(s) in Y1 to
the node(s) in X1, then in the absence of P , there always exists an adversary
strategy using which Ā∗ can violate the reliability property of Π∗.

2. We next show that even if there is some reverse path, say p, from Y1 to X1,
then also presence of p does not help in the possibility of URMT (in the ab-
sence of P ), thereby maintaining the impossibility of URMT in N ∗

URMTBEF

as projected above. This is tricky to prove. In order to prove this, we consider
all possible allowable behavior of path p. We then show that corresponding
to each different status of p, the strong path(s) from X1 to Y1 should defi-
nitely satisfy certain properties. If not, then we could augment N ∗

URMTBEF

by applying at least one of the constructions, thus contradicting the fact that
N ∗

URMTBEF
is URMT-BEF-Closure-Digraph. Now once it is shown that

corresponding to each status of p, the strong path(s) from X1 to Y1 exhibit
certain properties, we prove that there always exists an adversary strategy
which disallows p to help in the possibility of URMT.

So existence of P is necessary for possibility of Π∗ on N ∗
URMTBEF

. This in turn
implies the necessity of P in N ∗

URMTBEF
for the possibility of URMT in N . The

complete proof is given in [5]. �

Theorem 4 is demonstrated with an example in [5]. We have thus characterized
URMT in an arbitrary directed graph tolerating a non-threshold mixed adver-
sary. As stated earlier this also provides the characterization for the possibility
of URMT on Dunder tolerating Aunder.

7 Characterization of URMTspecial on Dunder

We now characterize URMTspecial (see Definition 6) in the “underlying digraph”
Dunder (Definition 5) tolerating A. Now the only reason why a URMT protocol
may exist in Dunder tolerating A but an URMTspecial does not exist in Dunder

(tolerating A) is that in URMTspecial protocol, the nodes in V in Dunder are



300 K. Srinathan et al.

forced to toss coins (which according to Definition 6, they cannot do). Now from
the proof of sufficiency of Theorem 4, the problem comes when in the protocol,
a node y from V in Dunder is acting as the head of semistrong path between
two nodes A and B (in one of the constructions in Table 1) and is forced to
send some random secret keys K1,K2,K3 ∈ F to A and B (as done in the
sub-protocol in Example 1). Since the virtual nodes from V cannot do any
random computation in URMTspecial protocol, we have to modify the definition
of URMT-BEF-Closure-Digraph to obtain URMTspecial-BEF-Closure-Digraph
of Dunder under the influence of A. We highlight only the modifications.

Definition 11 (URMTspecial-BEF-Closure-Digraph). Let N = Dunder =
(P ′, E ′) be the “underlying digraph” of a directed hypergraph D = (P , E), where
P ′ = (P ∪ V). Let Dunder be under the influence of A with A = {(B1, E1, F1),
(B2, E2, F2)}. We inductively define a sequence of directed networks N1,N2 . . .
with N1 = N , where the set of vertices, denoted by P ′

i, of the network Ni is
P ′

i = P ′ ∪ Vi with V1 = ∅ and the set of edges, say E ′
i, of Ni is E ′

i = E ′ ∪ Ai

with A1 = ∅. We also define a corresponding sequence of adversary structures
with two elements each, viz., A1,A2, . . ., where A1 = A.

The network Ni is augmented from Ni−1 by applying different constructions
from Table 1 (as done in Definition 9), with certain additional restrictions im-
posed. We mention these restrictions. Let A,B be two nodes in Ni−1, where both
A,B ∈ P. Thus A,B are physical nodes in Dunder. Let p be a strong path be-
tween A,B and q be a semi-strong path between A,B with head y. Now suppose
that paths p and q satisfy the condition of one of the constructions in Table 1,
say C. Let according to C, SA and SB denotes the set of adversarial nodes which
should be absent along the strong path from y to A and B respectively. Now we
can augment Ni−1 by applying C to A and B, if one of the following (extra)
conditions are satisfied:

1. The head y of q is such that y ∈ P (y is a Physical node in Ni−1): In
this case, C is directly applied to A and B (as done in Definition 9).
2. The head y of q is such that y ∈ V (y is a Virtual node in Ni−1): In this
case we put some additional constraints as follows: Let z ∈ P be the immediate
out-neighbor of y on the path from y to B and x ∈ P be the unique in-neighbor
of y. Note that according to the definition of Dunder (see Definition 5), if y ∈ V,
then it implies that the out-neighbor of y on the path from y to B (z) and the in-
neighbor of y (x) are physical nodes in Dunder. Hence both x and z are physical
nodes in Ni−1. Since y ∈ V and is not allowed to toss random coins, it cannot
perform any synchronization; i.e., in any protocol, we cannot ask y to send some
“secret” information to A first and send the same “secret” information to B,
only after A has send some “authenticated” message to B (this principle is used
in the sub-protocol in Example 1). With these properties of y, z and x, we now
mention the additional constraints on z and x:

1. Restriction on z: z /∈ (SA ∩ (E1 ∪ E2)) ∪ SB.

Remark: Informally, the above restriction says that z can not be under the
influence of a passive adversary set which is not allowed over the path from



Unconditionally Reliable Message Transmission in Directed Hypergraphs 301

y to A in C. This is so because in any protocol, y being a virtual node (∈ V),
sends every information received from its in-neighbor x, simultaneously to
both z and the first node from y to A. So if C requires the path from y to
A should not contain nodes from certain type of passive adversary set, then
the same type of passive adversary set should not influence z too. With this
restriction on z, if any synchronization is needed from y in the protocol (we
have used such synchronization from y when y is a physical node in the sub-
protocol in Example 1), can be taken care by z. We will explain this more
elaborately in the proof of Theorem 5.

2. Restriction on x: (a) x �∈ (F1 ∩ F2) and (b) If Ei ∈ SA, then x �∈ Ei ∪ Bi,
for i ∈ {1, 2}
Remark: When the head y of path q is virtual node, all the computations
supposed to be done by y in the protocol, is actually done by x. The above
restriction says that if path from y to A should devoid of Ei, then x can
not belong to Ei ∪Bi. In addition, x /∈ F1 ∩ F2. We prove the necessity and
sufficiency of the restriction in sequel.

If z and x follows the above restrictions, then we can augment Ni−1 by applying
C to A and B. Otherwise, C cannot be applied to A and B. Since C can be
any of the 24 constructions from Table 1, we get 24 corresponding additional
constructions when y ∈ V. We do not provide these additional constructions
here due to space constraint. The interested reader can see [5].

Now the characterization of URMTspecial in Dunder is given by the following
theorem:

Theorem 5. Let N = Dunder = (P ′, E ′) be the “underlying digraph” of a di-
rected hypergraph D = (P , E), where P ′ = P∪V and V is the set of virtual nodes.
Then URMTspecial is possible in N tolerating a non-threshold adversary A iff
for every A ⊆ A with A = {(B1, E1, F1), (B2, E2, F2)} both the following hold:

1. The network N is such that for each α ∈ {1, 2} the deletion of nodes in
((Bα ∪ Fα) \ {S,R}) does not eliminate all the strong paths from S to R.
2. The URMTspecial-BEF-Closure-Digraph of network N with respect to the
adversary structure A, viz., N ∗

URMTsplBEF
= (P∗,E∗) is such that, there exists

a strong path from S to R in N ∗
URMTsplBEF

, induced by the set of vertices (P∗ \
(B′

1 ∪ B′
2 ∪ (F ′

1 ∩ F ′
2))) ∪ {S,R} where the adversary structure closure A∗

spl =
{(B′

1, E
′
1, F

′
1), (B

′
2, E

′
2, F

′
2)}.

For the proof, see the full version of the paper [5]. Now Theorem 5, along with
Theorem 1, completely characterize URMT over directed hypergraph D, tolerat-
ing A(tb,tf ,tp). In the full version of the paper [5], we demonstrate Theorem 5 +
Theorem 1 on hypergraph D shown in Fig. 2, tolerating A(1,0,0) and A(1,1,0). We
show that URMT is possible tolerating A(1,0,0) but impossible tolerating A(1,1,0)
(as claimed in section 1).



302 K. Srinathan et al.

Table 1. The various constructions (#1 to #4) to augment Ni−1 to Ni. In the figures,
y denotes the head of semi-strong path between A and B and the labels along the
edges, represents the permissible category of adversary sets in permitted order for the
construction. F ∗

i = Fi \ (F1 ∩ F2) for i ∈ {1, 2}.

No. Temporary Link Conditions & Figure

#1
A → X1 → X2
→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ F2, X4 ∈ E2

1. y → A: ((B1 ∪ B2 ∪ F2 ∪ E1) \ {A, B})
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B: Path p: ((B2 ∪ (F1 ∩ F2)) \
{A, B}) with the last node from F∗

1
before the first node from E1 and
the last node from F∗

2 before the
first node from E2.

y

A B

F ∗

1 , F ∗

2

E1, E2
E2, F ∗

1

B1, F ∗

1 , E1, F ∗

2 , E2

1. y → A: ((B1 ∪ B2 ∪ F1 ∪ E2) \ {A, B})
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B: Path p: ((B1 ∪ (F1 ∩ F2)) \
{A, B}) with the last node from F∗

1
before the first node from E1 and
the last node from F∗

2 before the
first node from E2.

y

A B

F ∗

1 , F ∗

2

E1, E2

B2, F ∗

1 , E1, F ∗

2 , E2

E1, F ∗

2

1. y → A: ((B1 ∪ B2 ∪ F1 ∪ E1) \ {A, B})
with the last node from F∗

2 before
the first node from E2.
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B: for each i ∈ {1, 2}, Path pi:
((Bi ∪ (F1 ∩F2))\{A, B}) with the last
node from F∗

1 before the first node
from E1 and the last node from F∗

2
before the first node from E2.

A B

y E1, E2

F ∗

1 , F ∗

2

p1

p2

B2, F ∗

1 , E1, F ∗

2 , E2

B1, F ∗

1 , E1, F ∗

2 , E2

F ∗

2 , E2

1. y → A: ((B1 ∪ B2 ∪ F2 ∪ E2) \ {A, B})
with the last node from F∗

1 before
the first node from E1.
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B: for each i ∈ {1, 2}, Path pi:
((Bi ∪ (F1 ∩F2))\{A, B}) with the last
node from F∗

1 before the first node
from E1 and the last node from F∗

2
before the first node from E2.

A B

y

B2, F
∗

1 , E1 F ∗

2 , E2

F ∗

1 , E1

E1, E2

F ∗

1 , F ∗

2

B1, F ∗

1 , E1, F ∗

2 , E2

p1

p2

1. y → A: ((B1 ∪ B2 ∪ (F1 ∩ F2) ∪ E1) \
{A, B})
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B, Path p: (B2 ∪ (F1 ∩ F2)) \
{A, B}) with the last node from F∗

1
before the first node from E1 and
the last node from F∗

2 before the
first node from E2.
4. A → B, Path Q: (B1 ∪ B2 ∪ (F1 ∩ F2)

A B

y E1, E2

F ∗

1 , F ∗

2
E2, F ∗

1 , F ∗

2

p

Q

E1, F ∗

1 , E1, F ∗

2 , E2

B1, F ∗

1 , E1, F ∗

2 , E2

1. y → A: ((B1 ∪ B2 ∪ (F1 ∩ F2) ∪ E2) \
{A, B})
2. y → B: ((B1∪B2∪(F1∩F2))\{A, B})
3. A → B, Path p: (B1 ∪ (F1 ∩ F2)) \
{A, B}) with the last node from F∗

1
before the first node from E1 and
the last node from F∗

2 before the
first node from E2.
4. A → B, Path Q: (B1 ∪ B2 ∪ (F1 ∩ F2)

A B

y E1, E2

F ∗

1 , F ∗

2

p

Q

B2, F ∗

1 , E1, F ∗

2 , E2

F ∗

1 , E1, F ∗

2 , E2

E1, F ∗

1 , F ∗

2

#2
A → X1 → X2
→ X3 → X4 → B,
X1 ∈ E1, X2 ∈ F1,
X3 ∈ F2, X4 ∈ E2

Similar to the construction #1 except
that the condition “with the last node
from F∗

1 before the first node from E1”
is removed from the strong path(s) from
A to B in all the six cases

Similar to #1 except that first
restriction on the ordering of
vertices in the strong path(s)
from A to B is relaxed

#3
A → X1 → X2
→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ E1,
X3 ∈ E2, X4 ∈ F2

Similar to the construction #1 except
that the condition “with the last node
from F∗

2 before the first node from E2”
is removed from the strong path(s) from
A to B in all the six cases

Similar to #1 except that sec-
ond restriction on the ordering
of vertices in the strong path(s)
from A to B is relaxed

#4
A → X1 → X2
→ X3 → X4 → B,
X1 ∈ F1, X2 ∈ F2,
X3 ∈ E1, X4 ∈ E2

Similar to the construction #1 except
that both the conditions “with the last
node from F∗

1 before the first node from
E1” and “with the last node from F∗

2
before the first node from E2” are
removed from the strong path(s) from A
to B in all the six cases

Similar to #1 except that both
restrictions on the ordering of
vertices in the strong path(s)
from A to B are relaxed



Unconditionally Reliable Message Transmission in Directed Hypergraphs 303

References

1. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Hei-
delberg (2002)

2. Franklin, M., Yung, M.: Secure hypergraphs: Privacy from partial broadcast. In:
Proc. of 27th Ann. Symposium on Theory of Computing, pp. 36–44 (1995)

3. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority. In: Proc. of 21st ACM STOC, pp. 73–85 (1989)

4. Shankar, B., Gopal, P., Srinathan, K., Pandu Rangan, C.: Unconditional reliable
message transmision in directed networks. In: Proc. of SODA 2008 (2008)

5. Srinathan, K., Patra, A., Choudhary, A., Pandu Rangan, C.: Unconditionally re-
liable message transmission in directed hypergraphs. Cryptology Eprint Archive
Report 2008/371

6. Srinathan, K., Pandu Rangan, C.: Possibility and complexity of probabilistic reliable
communication in directed networks. In: Proc. of 25th PODC, pp. 265–274. ACM
Press, New York (2006)



An Open Framework for Remote Electronic Elections

Yu Zhang

Macau University of Science and Technology, Macau SAR China
Laboratory of Computer Science,

Institute of Software, Chinese Academy of Science, Beijing, China
yu.zhang@ens-cachan.org

Abstract. We propose a framework for remote electronic elections with an inde-
pendent, trustworthy authorization proxy. Unlike existing voting systems, voter
authorization is separated from particular elections in our scheme, and is done
through reusable credentials granted by the proxy. Moreover, different types of
elections can fit in the framework, with different sets of legitimate voters and
even different designs of voting and tabulation. We also define a cryptographic
protocol for the credential generation and the election registration.

1 Introduction

Designing a secure e-voting system has been a research issue for more than 20 years,
mainly in the field of cryptography. While there are still many researchers working on
it, some real voting systems have been put in practice in recent years, though few of
them succeed [22]. Most work on electronic voting systems focus on the cryptographic
design that meets some special requirements of e-voting systems, like receipt-freeness
or coercion-resistance, and many interesting protocols have been proposed [15, 27, 16,
3, 21, 10].

It is expected that in the future, electronic election schemes will be much more
widely and frequently used than today. A typical case would be that an individual par-
ticipates in multiple elections, and very likely, different elections may have different
sets of legitimate voters, e.g., the democrats for an intraparty election. Then how can
he vote via remote e-voting systems? In most existing systems, he must first identify
himself as a valid voter for the election, then the system will generate a distinguished
credential which allows him to cast valid ballots. Authorization is probably not an issue
of the computer part in those on-the-spot voting schemes like Prêt-à-Voter [8, 28] or
Punchscan [17], where voters are implicitly required to be present at the voting spot
and authorization will be done in person. But it is an issue in remote voting systems, as
it can be very expensive for voters to do on-the-spot authorization in every election.

Some recent proposals of remote voting schemes introduce anonymous credentials
for proving the eligibility of voters [21,11]. While these schemes do introduce interest-
ing mechanisms to prevent coercion, they all assume that there must exist untappable
channels during the registration so that coercers cannot simulate the complete procedure
of a voter. In particular, credentials will be granted via these untappable channels.

We notice that such untappable channels can be very expensive for every election
when an individual participates in multiple elections. Can we just register once for all? It

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 304–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Open Framework for Remote Electronic Elections 305

motivates us to propose an open voting framework, where we introduce an independent
authorization proxy and voting credentials are generated and granted by the proxy. What
distinguishes our scheme from other credential-based voting systems is the re-usability
of credentials, which allow voters to participate in multiple elections without doing
authorization every time. By doing so, we avoid implementing the expensive untappable
channels for every election, and voter eligibility is achieved by credentials, with the
proxy providing necessary aid to election authorities.

Meanwhile, anonymous credentials has been well studied in cryptography and there
are many credential systems which provide much more functionality than what we need
here [7, 12, 9, 24, 4], so instead of giving yet another cryptographic implementation of
e-voting, we are actually proposing an architectural approach of designing e-voting
systems. We argue that careful integrating existing credential systems and voting sys-
tems should be more reliable and offer more flexibility than designing everything from
scratch, hence our framework is open in the sense that different systems can be plugged
into it, with necessary adaption. We see this as our main contribution though we also
propose a cryptographic protocol for registration and credential generation to illustrate
the usability of the scheme.

Outline. The next section explains the architecture of the voting framework and how
component systems interact. Section 3 gives an informal analysis of what should be
met by each component, then in Section 4 we propose a cryptographic protocol for
credential generation and election registration. Section 5 concludes and discusses on
the implementation and security analysis of the scheme.

2 The Open Voting Framework

Figure 1 shows the global architecture of the voting framework with two independent
election cases, where we may have different election authorities, ballot designs, vote
collection and tabulation methods. Notice that eligible voters in the two elections can
be different, but they all come from the same large set of individuals, e.g., citizens of
the nation or students in the campus. This point distinguishes our scheme with other
existing voting schemes.

The authorization of voters is done with the aid of an authorization proxy, indepen-
dent of both elections: an eligible voter can go to the proxy, prove his identity, and ask
for a credential, which will be used to prove his eligibility in the voting procedure. If
he participates in both elections, use the same credential, or he can request for a new
credential as he wishes. The acquisition of credentials is totally separated from partic-
ular elections and can be done at any time, provided that the voter will not miss his
election. When an election is going on, the proxy offers necessary information to the
election authorities and helps them to check the eligibility of voters, without revealing
their identities.

The authorization proxy is assumed to be trustworthy, robust, and independent of
any election. Meanwhile, we do not specify who should be the authorities of a partic-
ular election, neither the design of voting and tabulation phases — we regard them as
external parts of the framework. This is to keep the framework open, so that organiz-
ers of particular elections can take a voting scheme that best meets their requirements,



306 Y. Zhang

... ...

Authorization Proxy

Voter

Voter

Voter

Voter Voter

Voter

... ...
Voter

Voter

Eligible voters 
for case #1 Eligible voters 

for case #2

Voting Case #1

Bulletin 
Board #1

Voting Case #2

Bulletin 
Board #2

Authority of 
Election #1  

Authority of 
Election #2  

... ...

... ...
Voter

Voter

... ...

Fig. 1. The architecture of the voting framework with two voting cases

or even design the voting system on their own. But more importantly, such a scheme
prevents the election authorities from direct identification of voters, minimizing the in-
teraction between the two.

Indeed, the open framework offers more flexibility (and more democracy in some
sense) — if voters complain about the voting scheme in use, it is always possible to
replace it with relatively lower cost. However, the security of the whole system then
heavily depends on the external voting schemes. We shall discuss on that in Section 3.

2.1 Agents

There are three kinds of agents in our voting scheme: voters, the authorization proxy,
and election authorities. The first two kinds of agents are election-independent and can
be involved in multiple cases, while each election authority is specific to a particular
election.

– Voters in our scheme are just individuals that will potentially participate in some
elections. Each individual is uniquely identified at the authorization proxy and
holds an anonymous credential which will authorize him to vote in elections.

– The authorization proxy is a trusted, independent authority whose essential respon-
sibility is the management of credentials, including delivering private credentials to
individuals and generating public credentials of eligible voters in response to the re-
quest of election authorities. He also deals with individuals’ requests for renewing
credentials, and sends notifications when credentials are expired.



An Open Framework for Remote Electronic Elections 307

Voter

Proof of identity

Private credential

Election Authority

Voter list
Public credentialsBallot

(vote + credential)

Authorization Proxy

Fig. 2. Interactions between agents in a single voting case

– Election authorities are responsible for particular elections. They collect ballots,
check their validity, tally and announce the final result. These are standard func-
tionalities of authorities in most voting systems.

Assumption 1 (Universally trustworthy proxy). Authorization proxies are univer-
sally trustworthy. They never cooperate with adversaries, coerced voters and corrupted
election authorities.

Figure 2 shows the interactions between the three types of agents in a single election.

2.2 Credentials

The credential delivering in the framework is a phase independent of any particular
election. Basically, a potential voter can request for a credential at any time provided
that he will not miss his election. For achieving a valid credential, he must first prove his
identity to the proxy. The proxy then generates a distinguished credential and sends it
to the requester, and keeps a record in his secret storage. In general, the record contains
the requester’s unique ID (e.g., the citizen ID or the student number), the credential,
expiring date (credentials should be renewed periodically for better security), and other
information like the requester’s contact, etc.

Note that the credentials mentioned above are private credentials and it is assumed
that the proxy will never reveal any credential to anybody other than the owner. For
election authorities being able to check the voter eligibility, the proxy need to produce
a public correspondence for each legitimate credential. These public credentials are ei-
ther published on the proxy’s bulletin board if there is one, or secretly transmitted to
election authorities, and the proxy must ensure the integrity of the information, usually
supplying a digital signature. The proxy also provides a mechanism for election author-
ities to check, when they receive a private credential, whether it belongs to a legitimate
voter without knowing the identity of the owner.

It has been noticed in [11] that for the sake of coercion-resistance, there must be some
phase during an election where adversaries cannot simulate a voter and the registration
is a good time for this. They in addition assume that there is at least one honest register
authority whose channel to voters is untappable, and in practice, this can be an off-
line authority. While it is expensive to have this assumption for every election, we can



308 Y. Zhang

assume, at lower cost in our framework, that the channel between the proxy and voters
is untappable.

Assumption 2 (Untappable channel for delivering credentials). The channel be-
tween each individual voter and the authorization proxy is untappable. The delivering
of private credentials is physically separated from any agent other than the proxy and
the involved voter.

2.3 Registration

Registration phase is the only interface between the authorization proxy and external
voting systems. When preparing an election, the election authorities (usually the reg-
istrars) first submit to the proxy a list containing all IDs of eligible voters, via some
secure channel. The proxy then generates the corresponding public credential for each
ID, performs a secret shuffling, then sends the resulted list back to election authorities
or publishes it on the bulletin board.

Since voters can request for new credentials, it is important for the proxy to publish
non-obsolete public credentials. A simple solution is to announce a registration dead-
line when an election starts: if a voter’s credential is going to expire before the deadline,
he must renew it; and the proxy will not publish the list of public credentials until the
deadline. Meanwhile, voting can take place immediately when the election starts be-
cause authorities does not have to check the eligibility of voters before the voting starts
— they can postpone it till the tabulation phase. The scheme can easily endure multi-
ple casting while tallying only one of them if the external voting system has a proper
tabulation policy on dealing with duplicate ballots.

2.4 Voting and Tabulation

Our voting framework itself does not define the exact protocols of voting and tabulation.
However, external voting systems must be credential based in order that they can make
use of the authorization functionality of the proxy. When a voter casts his ballot, he
usually needs to attach his credential with the vote to prove eligibility. Several existing
voting schemes already introduce credentials [21, 11] and can be adapted and fit in our
framework. We give a concrete example in Section 4.

3 Security Requirements

It is very likely that elections in different circumstances will have different security
goals. It is also what motivates us to define an open framework to offer more flexi-
bility to election organizers. While security analysis of the whole voting system de-
pends on the design of external election schemes, the framework itself needs to provide
enough security support so that when the design of the external election scheme is se-
cure enough, the whole system can meet even the strongest security requirements.

In fact, it has been widely accepted that the analysis of complex security systems
should be performed based on precise and formal models. Indeed, many formal models
for information security, especially for cryptographic protocols, have been proposed in



An Open Framework for Remote Electronic Elections 309

the past decade. Some automated tools for verifying security protocols are also devel-
oped and successfully used in practice (see [26] for a recent survey). In this paper, in-
stead of doing a formal analysis, we only informally describe the security requirements
that the voting system should meet. But a complete and general formal modelling of
e-voting systems (not just the one presented here) is certainly interesting and will be
our future work.

3.1 Security of e-Voting

This section summarizes the security properties that an e-voting system should satisfy
in general and we point out which properties are internal of our framework and which
depend on the design of external voting and tabulation.

Vote privacy: the fact that a voter voted in a particular way is not revealed to any other
agent. In other words, vote privacy means that no adversary can link a particular vote
with the voter who casted it.

Since the communication channels can reveal the identities of senders, in most e-
voting systems. it is assumed that the voting channels are anonymous. We also have
this assumption in our scheme:

Assumption 3 (Anonymous voting channel). The channels through which voters cast
their ballots are anonymous.

In practice, anonymous channels can be implemented using Chaum’s mix [5] or the
onion routing system [29].

Given the above assumption, vote privacy then depends on the information that a
voter will transmit over the network. Essentially, these are ballots casted by voters,
whose format or design is from external voting systems. But in voting systems based
on anonymous credentials, ballots generally include credentials, so it is important that
credentials themselves do not reveal the owners’ identities. Later we define more pre-
cisely the privacy of credentials in our framework.

Voter eligibility. Only legitimate voters can vote, or more precisely, only ballots of
legitimate voters will be tallied. In many modern voting systems, casting a ballot is
actually posting it on a public bulletin board which is usually appendable by anybody.
It is of course possible that election authorities grant the writing privilege to eligible
voters only, but that again requires authorization and increases the risk of violating
privacy.

In our scheme, voter eligibility, or preferably vote eligibility, is partially ensured by
the trusted authorization proxy in the registration protocol: if all voters agree on the list
of legitimate identities submitted by election authorities, then the list returned by the
proxy contains one and only one public credential for each legitimate voter. In addition,
external voting systems must be able to remove ballots with invalid credentials, i.e.,
whose public correspondences are not in the list provided by the proxy.

Voter verifiability. Individual voter can verify whether his vote is effectively counted.
It depends on the protocol of vote collection and tabulation. In our scheme, voters must
first be able to verify that their public credentials appear in the list produced by the



310 Y. Zhang

proxy. Note that this is not trivial since the proxy does not necessarily publish the list,
but simply sends it to election authorities, so corrupted authorities can remove creden-
tials from the list or entirely replace it with another one, hence it is necessary for voters
to check the integrity of the list.

Universal verifiability. Voters can verify whether all votes are correctly tallied in the
final result. If the voters accept the collection of votes before tallying, universal veri-
fiability is then a property of the tabulation protocol, which is defined by the external
voting system.

Receipt-freeness. No voter can prove that he voted in a particular way. Receipt-freeness
is in particular needed for preventing vote-buying. While this heavily depends on the
ballot format, a poorly-designed credential alone can be a receipt, hence violating the
receipt-freeness of the whole system.

Coercion-resistance. Coercers cannot force a voter to vote in a particular way. This is
an even stronger property than receipt-freeness. A common solution in recent coercion-
resistant schemes [21,11] is to allow voters to generate fake credentials so that they can
send with them the ballots that a coercer forced them to. It is also assumed that election
authorities can detect fake credentials and eliminate attached ballots.

Security of Credentials. Managing credentials is the essential functionality of the au-
thorisation proxy. Though many security properties mentioned above depend on exter-
nal voting schemes, without combined with particular ballots, credentials themselves
should satisfy some security requirements.

Non-forgeability. No agent other than the proxy can generate a valid credential. In the
computational model, it means that the probability of forging a credential should be
negligible.

Privacy. If a voter submit his private credential to the election authorities, via an anony-
mous channel, no adversary or corrupted authority can link the credential with the iden-
tity of its owner.

Verifiability. The proxy can prove secretly to the voter, usually through a designated
verifier proof [19], that his credential is correctly encoded in the list of public credentials
if he is a legitimate voter. This property is optional when the Assumption 1 holds.

Coercion-resistance. An adversary or a coercer cannot force a voter to reveal his pri-
vate credential. We assume that the coercer and the coerced voter does not trust each
other, so even if the voter is willing to reveal his credential, he is not able to prove
that the revealed credential is a real one. This actually implies that the credentials are
receipt-free.

4 Cryptographic Protocols

In this section we give a cryptographic protocol for generating credentials and registering
elections. Note that the paper is not trying to design yet another complete, ready-for-use



An Open Framework for Remote Electronic Elections 311

election scheme, so we do not define these protocols as internal of the framework, but
rather an example to illustrate the usability.

4.1 Setup

We write I for the large set of identities of individuals, containing all potential voters.
For the moment, we assume that there is only one authorization proxy and we write AP
for the proxy.

G is a very large group of bitstrings for generating credentials. In particular, we
assume that credentials are simply elements of G and the size of the group G should be
large enough to prevent forgeability.

Assumption 4 (Large credential group). There exists a group G whose size is suffi-
ciently larger than |I| so that adversaries cannot forge a true credential or detect fake
credentials with non-negligible probability.

We also assume that the encryption over the group G is asymmetric and probabilistic.
For every θ ∈ G, we write E(θ, k) for the space of the ciphertexts of encrypting θ with
key k.

Assumption 5 (Plaintext-equivalence-test). There exists a plaintext-equivalence-test
protocol PET for the probabilistic encryption over G, such that for every two encrypted
credentials s1, s2, PET(s1, s2) equals 1 if s1, s2 ∈ E(θ, k) for some θ ∈ G and some
key k, and a random number otherwise.

cred is a function that transforms a private credential to its public representation. In
particular, cred(θ, k) ∈ E(θ, k). If � is a list of identities, we also write PubList(�, k)
for the shuffled list of corresponding public credentials. The shuffling is a random per-
mutation performed by the proxy and kept secret.

4.2 Credential Generation

Anonymous credentials was first introduced by Chaum in 1980s [6] to protect the pri-
vacy of individuals when offering the accessibility to resources. Many systems and pro-
tocols have been proposed ever since [7, 12, 9, 24, 4] and we believe most of them can
be integrated in our framework with various of external voting schemes. But instead of
using those complex systems which are usually designed for much more sophisticated
circumstances, we propose here a simpler protocol for generating credentials that pro-
vides enough security for electronic elections. Our proposed protocol is based on the
one used in the JCJ-scheme [21].

Upon sufficient proof of the identity of an individual i ∈ I, the authorization proxy
generates a set of pair-wise distinguished random strings

Θi = {θi, δ1i , . . . , δni

i | θi ∈U G, δki ∈U G, k = 1, . . . , ni},

where G is the large El-Gamal group. The proxy then sends these strings to the in-
dividual i via an untappable channel (Assumption 2). Assumption 4 ensures the non-
forgeability of true credentials.



312 Y. Zhang

Intuitively, the string θi is the true credential for i and δ1i , . . . , δ
ni

i are fake creden-
tials. We write ∆ for the universal set of fake credentials, i.e., ∆ =

⋃
i∈Id(Θi/{θi}).

The following two conditions must hold for credentials:

(CRED-1) ∀i ∈ I, θi �∈ ∆.
(CRED-2) ∀i, j ∈ I s.t. i �= j, θi �= θj .

The two conditions guarantee that real credentials never mix up with each other or with
fake credentials, i.e., the proxy offers a unique credential for each individual. (Note that
(CRED-1) does not stand automatically from the above definition of∆.) Meanwhile, it
does not matter whether a fake credential has been granted to two or more individuals.
They are given to voters to cheat coercers: when coerced, voters submit their coerced
votes with the fake credentials, which is assumed to be eliminated in the tabulation
phase. This is similar to that in the JCJ-scheme, where a coerced voter choose by him-
self a random group member of G as the fake credential. Their approach is dangerous
when the size of G is not large enough because the fake credential will likely be a true
credential of another voter.

Note that ni – the number of fake credentials granted to the individual i – varies
for different individuals and is kept secret by the proxy, so that when coerced, a voter
can always hide his true credential. He is not able to prove his true credential without
additional information because he cannot convince the coercer that all of his credentials
has been revealed.

Public credentials are generated when an electionE starts: when the AP receives the
list of legitimate identities of the election, he first generates a pair of asymmetric keys
(PKE , SKE) for the election, then he produces a public credential
ϑi = cred(θi,PKE) for every identity i in the voter list (θi is the corresponding private
credential).

Compared with the credential generation protocol used in the JCJ-scheme, the nov-
elty of ours is that we allow voters to reuse their credentials in multiple elections. While
this is also possible in the JCJ-scheme, it has to be ensured that different election cases
must have the same set of legitimate voters, which is certainly too restrictive in our
framework.

4.3 Registration Protocol

The registration protocol specifies how the election authorities achieve from the au-
thorization proxy the list of public credentials of legitimate voters. When starting an
election E, the election authorities send to the proxy �E , the list of legitimate identi-
ties in the election. The proxy then responds by the shuffled list PubList(�E ,PKE)
of corresponding public credentials. By assumption 1, if the �E is not modified during
the transmission, the returned list contains all and only public credentials of individuals
in �E . If the proxy has his own private bulletin board which everybody can read but
nobody other than the proxy can write to, then he can simply publish the list on his
bulletin board. If there is no such board and the list has to be transmitted via a normal
communication channel, then the registration protocol must first mutually authenticate
the election authority and the proxy, and offer them a secure transition.



An Open Framework for Remote Electronic Elections 313

Essentially, the authentication between the two parties can be done through the well-
known Needham-Schroeder-Lowe public key protocol [23]. The messages after the
handshake phase of the NSL protocol provide data integrity and can be:

EA → AP : enc({nE, �E}, k) (1)

AP → EA : sig({nE , �E,PKE ,PubList(�E ,PKE)}, SKAP ) (2)

where nE is the unique election ID, PKE is the public key generated by the proxy for
the election only, k is the session key established during the handshake phase, enc is
standard symmetric encryption and sig is a signature scheme. nE and �E is necessary
to be included in the second message for identifying the right election. If the AP has a
private bulletin board, the second message is also what he publishes there.

4.4 An Example of Voting and Tabulation

For building a concrete voting system, it remains to define the protocols of voting and
tabulation. We briefly describes how other voting schemes can be adapted and fit in,
based on the voting protocol proposed by Juels et al. [21], but we skip most crypto-
graphic details.

Voting. The candidates in the JCJ-scheme are encoded as elements of the group where
voter credentials are generated. In our framework, it can be done by the AP to avoid
collision, using the group G. The candidate slate is put in the message (2) in the regis-
tration protocol.

When the election starts and the AP publishes the candidate slate, the voter i can
cast a ballot for the candidate c comprising two El-Gamal ciphertexts (E1, E2), respec-
tively for the candidate choice c and his credential θi. He also includes proofs showing
that the candidate choice c is valid and he knows θi and c simultaneously. The voter
then sends the ballot to the bulletin board of the election, via an anonymous channel
(Assumption 3).

Tabulation. To tally the ballots posted on the bulletin board, the election authorities
first verify the correctness of every ballot and eliminates those invalid. Then they sep-
arate the vote and the credential in each of the remained ballot and get two lists — a
list of encrypted votes and a list of encrypted credentials. Now perform the plaintext
equivalence test [18, 25] on the latter list to remove duplicate credentials, as well as
their corresponding votes in the other list. Perform PET again on each credential, with
the public credential list produced by the AP , and remove the illegitimate credentials
(and the corresponding votes). In the end, the tabulation authority decrypts the remained
votes, tallies and publishes the result.

5 Conclusion and Discussion

We propose in this paper a novel framework for remote electronic elections. Not like ex-
isting e-voting systems, our scheme has a universally independent authorization proxy
and separates the voter authorization from particular elections. More importantly, vot-
ers can participate in multiple elections without doing authorization each time, by



314 Y. Zhang

using reusable credentials. In particular, we do not require that elections in the frame-
work must have the same set of voters, while it is a restriction in other voting schemes
e.g. [21]. Some other voting schemes completely remove the registration phase, assum-
ing the existence of a public key infrastructure and using the identity-based ring signa-
ture [10]. But their scheme achieves only receipt-freeness, and it will be interesting to
see whether it can be extended to achieve coercion-resistance.

We recall that our motivation is not to propose yet another secure e-voting system that
focuses on the cryptographic design to meet non-standard security properties. The open
framework in this paper is rather an architectural design of remote e-voting systems that
separates the authorization and registration phase, which should be carefully designed
in remote elections, from the design of real voting systems, so that system designers do
not have to start from scratch and can concentrate on the integration of external voting
schemes with the credential system.

5.1 The Authorization Proxy

Assumption 1 makes the authorization proxy the central point of attacks, hence its ro-
bustness is very critical in our framework. One way to improve the robustness of the
proxy is to introduce multiple proxies and election authorities will choose one of them
for the election, or if voters complain about some proxy, the election can change to
another one, but that will require voters to register at all proxies.

It is also possible to use distributed scheme of credential generation as in [11], where
credentials are generated by multiple proxies, each only having one share of a creden-
tial, and revealing a particular credential needs to corrupt all or a majority of proxies.
But in that case, we need to redefine the registration protocol, especially the generation
of the list of public credentials, as the link between voter identities and their public
credentials must not be derivable from the two lists in the registration protocol.

The idea of having universally independent authorization proxies can be extended
to the tabulation phase, by introducing a tabulation proxy who is also independent of
particular elections and can perform the tabulation for multiple elections. However,
since the tabulation depends highly on the design of ballot, it will probably demand a
uniform ballot format and introduce new problems of implementation and security.

5.2 Formal Analysis

We point out in Section 3 that security analysis of complex e-voting systems should
be performed based on formal models and techniques. While there are many formal
models for verifying traditional cryptographic protocols [26], very little work is known
to be done for electronic voting systems. What should be mentioned here is the work
by Delaune et al. [14]. They did probably the first, complete formal analysis for sev-
eral e-voting protocols, based on the applied Pi-calculus [1], which is a formal lan-
guage for reasoning about communicating processes with cryptographic primitives in
the Dolev-Yao model. They give a formal definition of some special security proper-
ties like receipt-freeness and coercion-resistance based on the notion of observational
equivalence, and use the technique called bisimulation to prove those properties. Jules et
al. have also defined a formal model for verifying e-voting system when they propose
their own coercion-resistant scheme [21]. Their model is essentially a computational



An Open Framework for Remote Electronic Elections 315

model, hence more realistic but also harder to automate compared to that of Delaune et
al., which is still a Dolev-Yao model (cryptography is assumed to be perfect and adver-
saries do not perform any cryptanalysis). There are some other formal models based on
the epistemic logic [20, 2].

It will be interesting to see how these models can be applied to our framework. Be-
cause it is an open scheme and can be instantiated with different credential systems and
voting protocols, the challenge of doing formal analysis would be verifying desired se-
curity properties that are preserved by the integration of component systems. As noticed
in [13] that security properties usually do not compose, even if the component systems
have already been proved secure, the final system might not be.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp.
104–115 (2001)

2. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols.
In: Proceedings of the 11th conference Theoretical Aspects of Rationality and Knowledge
(TARK), pp. 62–71. ACM, New York (2007)

3. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate
election system. In: ACM Symposium on Principles of Distributed Computing (PODC), pp.
274–283. ACM, New York (2001)

4. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 24(2), 84–88 (1981)

6. Chaum, D.: Security without identification: Transaction systems to make big brother obso-
lete. Communications of the ACM 28(10), 1030–1044 (1985)

7. Chaum, D., Evertse, J.-H.: A secure and privacy-protecting protocol for transmitting personal
information between organizations. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 118–167. Springer, Heidelberg (1987)

8. Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A practical voter-verifiable election scheme. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679,
pp. 118–139. Springer, Heidelberg (2005)

9. Chen, L.: Access with pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryptography: Policy
and Algorithms 1995. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg (1996)

10. Chow, S.S., Liu, J.K., Wong, D.S.: Robust receipt-free election system with ballot secrecy
and verifiability. In: Network and Distributed System Security Symposium, pp. 81–94 (2008)

11. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: IEEE
Symposium on Security and Privacy 2008, pp. 354–368. IEEE Computer Society, Los Alami-
tos (2008)

12. Damgård, I.: Payment systems and credential mechanisms with provable security against
abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 328–335.
Springer, Heidelberg (1990)

13. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (pcl). Electronic
Notes in Theoretical Computer Science 172, 311–358 (2007)



316 Y. Zhang

14. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in electronic
voting. In: IEEE Computer Security Foundations Workshop (CSFW-19), pp. 28–42. IEEE
Computer Society, Los Alamitos (2006)

15. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections.
In: ASIACRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1992)

16. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg
(2000)

17. Hosp, B., Popoveniuc, S.: An introduction to punchscan. Technical report (2006),
http://www.punchscan.org/papers/
popoveniuc_hosp_punchscan_introduction.pdf

18. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via ciphertexts. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg
(2000)

19. Jakobsson, M., Sako, K., Impagliazzoand, R.: Designated verifier proofs and their applica-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer,
Heidelberg (1996)

20. Jonker, H., Pieters, W.: Receipt-freeness as a special case of anonymity in epistemic logic.
In: IAVoSS Workshop On Trustworthy Elections, WOTE 2006 (2006)

21. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceed-
ings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 61–70. ACM, New
York (2005)

22. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic voting
system. In: IEEE Symposium on Security and Privacy, pp. 27–40. IEEE Computer Society,
Los Alamitos (2004)

23. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol. Informa-
tion Processing Leters 56(3), 131–133 (1995)

24. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M.,
Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)

25. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated key ex-
change. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 385–400. Springer,
Heidelberg (2000)

26. Meadows, C.: Ordering from satan’s menu: a survey of requirements specification for for-
mal analysis of cryptographic protocols. Science of Computer Programming 50(1-3), 3–22
(2004)

27. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In: Christian-
son, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 25–35. Springer,
Heidelberg (1998)

28. Ryan, P.Y.A., Schneider, S.A.: Prêt á voter with re-encryption mixes. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 313–326. Springer,
Heidelberg (2006)

29. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion routing.
In: IEEE Symposium on Security and Privacy 1997, pp. 44–54. IEEE Computer Society, Los
Alamitos (1997)

http://www.punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://www.punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf


Conditional Payments for Computing Markets

Bogdan Carbunar and Mahesh Tripunitara

Motorola Inc., Applied Research and Technology Center
1301 E. Algonquin Rd., Schaumburg, IL 60196, USA

{carbunar,tripunit}@motorola.com

Abstract. The problem of outsourcing computations in distributed en-
vironments has several security challenges. These challenges stem from
the lack of trust between the outsourcer and a worker. Previous work
has extensively considered one side of the trust problem - the efficient
verification of the completion of the outsourced computation. We believe
this to be the first work that simultaneously addresses the other side
of trust - ensuring valid remuneration for the work. We propose a so-
lution in which the outsourcer embeds a verifiable payment token into
the computation to be performed. With high probability, the worker can
verify that if it completes the computation it will retrieve the payment,
and the outsourcer is convinced that if the worker retrieves the payment
then it has completed the computation. We also discuss the robustness of
our scheme against two possible attacks that target the desired security
properties, and possible extensions to our scheme.

1 Introduction

The ability of computer owners to donate computing resources and to harness
available compute cycles on remote hosts has motivated the recent develop-
ment of large distributed volunteer computing projects. Ranging from searches
for prime numbers (GIMPS, PrimeGrid) to searches for extraterrestrial intelli-
gence (SETI@home), climate forecast (Climateprediction.net), and protein fold-
ing (FOLDING@home) such projects have created unprecedented computing
settings, comparable in performance to the most powerful supercomputers. For
instance, SETI@home encompasses more than 1.3 million registered computers,
totaling over 265 TeraFLOPS; between 1999 and 2007 the project has consumed
more than 2.7 million years of computation time.

A majority of such distributed computations deploy a master-workers
paradigm, supported by a centralized server infrastructure and multiple vol-
unteer workers. A server (outsourcer) decomposes the problem into smaller jobs,
each of which can be completed in a few hours on a typical personal computer.
Workers obtain jobs from and report results back to the outsourcer.

In this paper we focus on an abstract setting of this environment, where an
outsourcer, O, needs to compute a function f : D −→ R for all values in D
where D is large set. The outsourcer does this by partitioning D into subsets
D1, . . . , Dn and assigning the task of computing f over each Di to a differ-
ent worker W . Several realistic settings can be mapped to this rather abstract

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 317–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



318 B. Carbunar and M. Tripunitara

setting. Examples include searching for large prime numbers, solving large 0-1
integer linear programming problems or solving RSA’s key-finding challenge.

This setting has two basic security issues. One issue is O’s lack of trust in the
workers. O does not necessarily trust that W will do its assigned job, that is,
compute f over every di,j ∈ Di. The other security issue is the workers’ lack of
trust in O. Since W is usually incentivized to work for O, for instance, through
the use of money, W must be able to trust that it will be paid by O if it does
its job.

The issue of O’s trust inW has been considered extensively in the literature [5,
6, 10, 11]. An effective solution is to use ringers [5]. With ringers, O does not
have to perform the entire computation itself (that would defeat the purpose of
outsourcing), but is able to ensure with overwhelming probability that W did
indeed compute f over all di,j ∈ Di. We present a more detailed overview of
ringers in Section 2.1.

The issue of W ’s trust in O, however, has not received much attention. In
particular, we point out that the work on ringers [5] suggests at the outset that
there are settings in which O may not be trustworthy. However, the solution
itself assumes that O is trusted. There are at least two situations in which O
may not be deemed to be trustworthy. One is if O is not an established entity,
such as a working group or a large corporation. Such entities may have more to
lose (e.g., by way of reputation) than to gain by cheating some W in the context
of a particular outsourced job. However, if O is relatively unknown, then W may
consider it to be untrustworthy. The other situation is similar, and is when O
chooses to remain anonymous. O may want to remain anonymous because, for
example, a revelation about the nature of the job and its association with O may
alert O’s business competitors.

The problem can be solved easily if we assume the existence of an online
trusted third party that mediates between O and W . That is, the mediator
keeps O’s money in escrow and verifies the completeness of the job performed
by W . In case of a successful job completion, the mediator transfers the money
to W , otherwise, it transfers them back to O. This is not a realistic solution as
(i) the mediator needs to know extensive details about the job and the parties
involved and (ii) the mediator needs to consume resources (CPU cycles) for each
job verification performed.

Contributions. The focus of this paper is on the simultaneity problem; O
cannot payW without assurance thatW has completed or will complete the job
andW does not want to work unless it has been paid or has assurance that it will
be paid. Similar to [5], our work also assumes only rational “lazy-but-honest”
workers. A lazy-but-honest worker will try to minimize the amount of work it
needs to perform in order to retrieve the payment, however, it will provide O
with the results of that work.

In Section 3, we introduce a framework for embedding payments into out-
sourced jobs. We propose several security properties, to be satisfied by any solu-
tion to this problem, requiring that (i) given the job and the embedded payment,
W can verify the validity of the payment, that is, verify that if it completes the



Conditional Payments for Computing Markets 319

job it will be able to retrieve the payment and (ii) O can be certain that W
cannot retrieve the embedded payment unless it completes a high percentage of
the job.

Within the proposed framework, we propose a solution for the simultaneity
problem where the outsourcer uses a threshold sharing scheme to split the pay-
ment into multiple shares and obfuscates a randomly chosen subset of the shares
with solutions to parts of the job. As the payment shares are generated using a
threshold sharing scheme, the worker needs to retrieve only a subset of the shares
in order to reconstruct the payment. Moreover, the workers use random challenges
to verify the correctness of the obfuscated payment. Note that even though our so-
lution uses a trusted bank to generate and transfer payments, the bank is offline
and is not involved in the interaction between the outsourcer and worker.

2 The Setting

We have, as entities, (i) an outsourcer, O, and, (ii) a worker, W . In addition,
we have (iii) a bank, B. We need B as we assume that W is incentivized by
money. That is, W (or anyone else) recognizes a payment token as valid based
on its strong binding with B (e.g., with a digital signature).
B is offline in that O and W independently transact with it outside of any ex-

changes they have as part of the outsourcing. Furthermore, B’s role is purely as a
financial “holding company”. B has no interest or participation in the nature of
the outsourcing between O andW . O andW trust B to play this role of a bank.

An outsourcing instance is associated with an outsourcer O and a worker W ,
and is a tuple, 〈Fi, Pi, Si〉 that comprises the following. We keep our terminology
consistent with prior work [5].

– A job, which is a triple Fi = 〈f,Di,Mi〉, where f: D −→ E is a function on
the finite domain D, Di ⊆ D and Mi is a set of values of interest for O. W
needs to compute f(x) for all x ∈ Di and return those x values for which
f(x) ∈Mi.

– A payment scheme, Pi that is issued by B. We leave Pi opaque for now; it
can be thought of as an e-cash payment token from one of several e-cash
schemes (for example, [1, 2]). We require that Pi have particular properties
for our schemes to work; we discuss these in Section 3.

– A screener, Si(x, f(x), Pi) −→ {0, 1}∗. Si is typically implemented as a pro-
gram that takes as input an entry from the domainDi of f , its corresponding
image from the range E and the payment scheme Pi. The output of Si is a
string. The intent behind S is to identify “valuable” outputs of f , either for
O (solutions for the job Fi) or for W (values that aid W in retrieving the
payment associated with the job).

There are the following three stages in our model of outsourced distributed
computation.

Initialization. O prepares the outsourcing instance Fi and payment Pi and
sends them to W .



320 B. Carbunar and M. Tripunitara

Verification. W validates Pi to gain assurance that it will be paid once it
completes the job.

Computation and Payment. W performs computation. For each input x ∈
Di, it computes f(x) and uses the screener S to find 〈x, f (x)〉 pairs of interest
and communicates these back to O. In using S, it is able to derive its payment.

2.1 Ringers - An Overview

We now discuss ringers and how they are used to solve the problem of the trust
in W - O needs to be able to establish that W does indeed perform all the
computations that were outsourced to him. Golle and Mironov [5] present the
following “bogus ringers” solution.

Initialization. O chooses an integer 2m, the number of ringers; a ringer is a
kind of sample. It picks a random integer t ∈ [m+ 1, . . . , 2m] to be the number
of true ringers, and 2m− t to be the number of bogus ringers. The distribution
of t in [m+ 1, . . . , 2m] is d(t) = 22m−t−1. A true ringer xt is a randomly chosen
member of Di (recall that Di is the domain of the function f to be computed
by W ). A bogus ringer xb is such that xb �∈ Di. O computes f(x) for every true
and bogus ringer x. These post-images are included in the screener Si that is
sent to W . (We clarify how Si works below.)

Verification. There is no verification phase in the original ringers scheme as O
is assumed to be trusted. The lack of trust in O is what we address in this paper.

Computation and Payment. The screener Si is such that it takes as input
a pair 〈x, f(x)〉 and tests whether f(x) ∈ {y, y1, . . . , y2m} where y is the post-
image for whose pre-image O is searching, and each yj is the post-image of a
true or bogus ringer. If f(x) is indeed in that set, then Si outputs x; otherwise
it outputs the empty string. W computes f for each element in Di, processes
each through Si, collects all the outputs of Si and sends them to O to receive
its payment.

We point out that if W honestly does its work, then what it sends O at the
end is the set of true ringers, and possibly the special pre-image for which O
is looking. The ringers ensure that W does its entire work. The bogus ringers
make it more difficult to stop prematurely and still make O believe that it did
its entire work. We emphasize that whenever we use words such as “ensure,”
“difficult” or “impossible” in this paper, we mean probabilistically. Specifically,
given that the coverage constant denotes the fraction of the job completed by
the worker, we reproduce here Theorem 2 from [5].

The bogus ringers scheme ensures a coverage constant of 1 − 1
n2n+1 − ( 4

n )n.
From the standpoint of performance, there is a trade-off between the mini-

mum number of true ringers, n, and the security of the scheme. The probability
that cheating by W will go undetected falls exponentially as n increases. We
anticipate that n is much smaller than |Di| and therefore the extra work on O
is minimal. The extra work on W is also minimal because all Si does is lookups
for membership in a set.



Conditional Payments for Computing Markets 321

3 Our Overall Approach

As we mention in the previous section, the original ringers scheme does not
address the scenario that O is untrustworthy from the standpoint of paying W
once it does the work. We address the two sub-problems of trust simultaneously.
In this section, we introduce the properties that need to be satisfied by a solution
and present a framework for solutions. We propose a specific solution within this
framework in Section 4. Figure 1 illustrates our framework.

In our framework, in the initialization stage, O embeds the payment in the
ringers it generates, before sending it to the worker. The payment embedding
needs to satisfy the following properties.

Definition 1. (Outsourcer Assurance) Given the initial payment and job
instance, the worker is able to redeem the payment only if with high probability
it correctly completes the entire computation.

We adopt the following schemes so our solution can have this property.

Payment splitting. There is a payment splitting scheme and corresponding
payment reconstruction scheme. The payment splitting scheme can be run by O,
takes as input the payment Pi and outputs a set

{
p1i , . . . , p

2m
i

}
such that some

subset of the set can be put through the reconstruction scheme to retrieve the
payment. We call each pa

i a payment piece.

Embedding. There exists an embedding scheme which takes as input some piece
pa

i and some (true or bogus) ringer r and outputs rai that can also act as a ringer
(that is, it is indistinguishable from a ringer). There is a corresponding retrieval
scheme that can be used to retrieve the ringer and the payment piece from rai .

After receiving the payment and the job, but before starting to perform the
computation, the worker should be able to verify the payment’s validity. For
this, we need the payment to satisfy the following property.

Definition 2. (Payment Verifiability) The worker can verify that the pay-
ment received from the outsourcer is valid, that is, that after correctly completing
the job, it will be able to redeem the payment with high probability.

Bob
The Bank

Oliver
The Outsourcer

Walter
The Worker

Payment Generation
1

Job and Payment Transfer
2

Payment Verification
3

Job Computation
4

Payment Redemption
5

Payment Cancelation

Fig. 1. Solution Framework



322 B. Carbunar and M. Tripunitara

To achieve this property, we need the following solution components.

Identification. There exists a payment piece identification scheme, with which
it is possible to: (i) identify that some ringer rai indeed embeds a payment piece,
and, (ii) identify whether two ringers, rai and rbi , are embedding pieces from the
same payment scheme.

Verification. There exists a verification scheme in which W queries O for some
q < 2m payment pieces where 2m is the total number of pieces. W is able to
identify that the pieces are all part of the same payment scheme.

In the computation and payment stage, W needs to be able to redeem the
extracted payment token with B. O imposes a time limit on W so that if W
does not finish the job within a certain time-frame (negotiated by O and W ),
then O can cancel the payment. Consequently, we need the following property.

Definition 3. (Guaranteed Rollback) If W is unable to finish the job in
time, the outsourcer is guaranteed to receive its money back from the bank.

We point out that both O and W trust B to operate like a bank. O trusts B
to jointly create a payment scheme and maintain a holding account for it until
cancellation or redemption.W trusts that provided it is able to produce sufficient
evidence of having the payment token, B will redeem it for him. To achieve the
above property, the bank needs to provide the following functionality.

Redemption. B provides a redemption scheme via which W is able to redeem
a payment token that it retrieves by completing its job.

Cancellation. B provides O with a cancellation scheme via which O can cancel
the holding account and retrieve its money if it is not redeemed in time.

In our specific solution discussed in Section 4, we specify each of the above
schemes. We make the observation that B does not need to be online at the time
whenW finishes a job, in order forW to be able to redeem the retrieved payment
token. Instead, a time stamping authority T can be employed by W in order to
authenticate the timely execution of the job. Then, W has a longer, predefined
time interval for contacting the bank, providing the payment and proving its job
completion timeliness, before O can cancel the payment. However, for simplicity
of presentation, in the following, the redemption and canceling steps do not
include the use of T .

The solution presented in Section 4 was designed initially to use a variant of
Chaum et al.’s [2] offline e-cash scheme as payment. Moreover, we envision that
other offline e-cash schemes (such as Brands’ [1]) can be used in conjunction
with our solution. The use of e-cash has the additional benefit of preserving the
privacy of the outsourcer and of the workers. However, due to the complexity
added by such e-cash schemes, we present our solution in the context of a simple
e-cash scheme that does not preserve the anonymity of its users.

Notations. In the following we use the notation x ↪→R D to denote the fact that
the value x is randomly chosen from the domain D. We also use x; y to denote



Conditional Payments for Computing Markets 323

the concatenation of strings x and y. EK(M) denotes the symmetric encryption
of message M with key K. For a given symmetric key algorithm, let s denote
the key’s bit size. Let H be a one-way (hash) function. Let H(M) be the hash of
messageM and let h be H(M)’s bit size. Using RSA’s [7] notations, let 〈eX , NX〉
and 〈dX , pX , qX〉 denote the public and the private key of participant X , where
NX = pXqX is the public modulus and eX and dX are X ’s public and private
exponent. Then EX(M) denotes the encryption of message M with X ’s public
exponent and SB(M) denotes the signature of message M using X ’s private
exponent. Let N be the bit size of the public modulus used for the encryption
and signature scheme.

While not explicitly shown, for clarity of presentation, all the messages sent
in the following solution are signed with the private key of the source and en-
crypted with the private key of the receiver (or a symmetric session key), in order
to provide confidentiality and authentication. Moreover, in order to prevent par-
ticipants from signing arbitrary messages, we assume signatures are provided
over the desired message concatenated with a fresh random number, chosen by
the signer. We however omit such details for clarity purposes.

4 Payment Splitting Based on Secret Splitting

Our solution works as follows. The outsourcer splits a payment into 2m + p
shares such that any 2m shares reconstruct the payment. It then uses ringers to
obfuscate a subset of the 2m+p shares, asks the bank to sign the shares and sends
the obfuscated shares together with the remaining non-obfuscated shares to the
worker. The worker does not know neither which nor how many of the 2m+ p
values received were obfuscated. The worker can challenge the outsourcer to
reveal q (a parameter) randomly chosen shares, on which the outsourcer reveals
the corresponding ringers (for obfuscated shares) and the bank’s signature. If
the verification is successful, the worker performs the job. Specifically, it treats
each point from the job’s input domain as a potential ringer in order to discover
and reveal the obfuscated shares. After completing the job (before the deadline)
the worker uses the discovered shares and the remaining, cleartext ones in order
to reconstruct the payment. The use of the payment’s threshold splitting step is
to ensure that even if the outsourcer corrupts up to p shares and is not caught
during the verification step, the worker is still able to reconstruct the payment.
The details of the solution follow.

Initialization. Let Fi = 〈f,Di〉 be the job to be outsourced by O to W . Let p
and q be two security parameters, c

√
m < p, q < m, for a constant c. O performs

the following step.

– Pick a symmetric key K ↪→R {0, 1}s and generate the tuple
〈Id(O), Id(W ), SN, v, T 〉. Send the tuple and K to B. SN is a fresh serial
number, v is the currency value of this token and T is the job deadline.



324 B. Carbunar and M. Tripunitara

iH(t  )is

Rndj
s j

it 

.  .  .

Id(O) Id(W) TSN v

i ir  = f(x  )

Obf(t  )i

Clr(j)

= P

Fig. 2. Generation of Obf and Clr shares. The Obf and Clr values are randomly
permuted (lower side in the figure) to generate the payment structure to be sent to W .

When B receives such a message, it computes the payment token
t=EK(SB(〈Id(O), Id(W ), SN, v, T 〉)) and stores the tuple 〈SN, v, T, t,K〉 in lo-
cal storage. It then sends to O the payment token t and the verification value
tV =SB(H(〈Id(O), Id(W ), SN, v, T 〉)). O then performs the following steps.

– Payment Splitting: Use a (2m, 2m+p) secret sharing scheme, like Shamir’s
scheme [9] to generate 2m+ p shares s1, .., s2m+p of t, such that any but not
less than 2m shares are required to compute t. Let SS be the reconstruc-
tion function, that given any 2m of the inputs s1, .., s2m+p outputs t. The
convention is that whoever knows t is able to cash the underlying payment.

– Pick an integer k ↪→R {m + p + 1, .., 2m − q} with distribution d(k) =
2m−p−q−k−1 just like in [5] and keep it secret. k denotes the number of
ringers.

– Use the shares s1, .., s2m+p to generate 2m+ p payment tokens
ti=〈Id(O), Id(W ), SN, v, T, si〉, i = 1..2m+ p. That is, each payment token
is a wrapper for one of the shares si. Send the payment tokens ti to B along
with t, k, m, p and q.

When B receives this message, it first verifies that m+p+1 < k < 2m− q, then
compares t against the value previously stored for O and uses SS to verify that
all the shares si contained in the token shares ti are unique and that any 2m of
them indeed reconstruct t. This verification step could be probabilistic. If any
verification fails B aborts and penalizes O’s account. Otherwise, B uses the value
k and the payment tokens ti to generate the set FV = {H(tk+1), ..., H(t2m+p)}
and stores it along with the tuple initially stored for O, 〈SN, v, T, t,K, FV 〉.
Then, B generates and sends to O, 2m + p values of the form SB(H(ti)), i =
1..2m+ p. When O receives these values it performs the following steps.

– Choose k values x1, .., xk ↪→R Di and compute their images, ri = f(xi),
i = 1..k. The ri’s are called ringers.

– Embedding: Use each ringer ri to obfuscate one payment token ti, by com-
puting the value Obfi = ri ⊕ (ti;H(ti)). Let sz = |Obfi|. Since k < 2m+ p,
not all the shares are obfuscated. For each of the remaining 2m+p−k shares,



Conditional Payments for Computing Markets 325

tl = 〈Id(O), SN, v, sl〉, l = k+1..2m+p, compute the value Clrl = (Rndl; sl),
where Rndl ↪→R {0, 1}sz−|sl| (see Figure 4 for an illustration). Note that the
previously defined set FV , stored by B, is a verification set for the cleartext
shares. Its use will become clear later, in the redemption step.

– Let Oi = {Obf1, .., Obfk, Clrk+1, .., Clr2m+p}. The set Oi con-
tains both the obfuscated and the non-obfuscated values. Let Vi =
{SB(H(t1)), .., SB(H(tk))} ∪ {Rk+1, .., R2m+p}, where Rk+1, .., R2m ↪→R

{0, 1}N . N is the size of the public modulus (of B). Thus, Vi consists of
B’s signatures on the k obfuscated payment tokens, along with 2m+ p− k
indistinguishable random values (replacing B’s signatures on the cleartext
values from set FV).

– Let π1 and π2 denote different random permutations. Then, the payment
scheme is Pi=〈P, V eri, tV , 2m+p〉, where the set P = π1(Oi) (see Figure 4),
V eri is the verification structure, V eri = π2(Vi) and as previously defined,
tV = SB(H(〈Id(O), Id(W ), SN, v, T 〉)).

– Outsource the job Fi to W by sending the tuple 〈Fi, Pi, SN, v, T 〉.

We make the observation that the set V eri does not contain B’s signatures on
the non-obfuscated payment tokens, Clrk+1, .., Clr2m+p. Also, the Clrk+1,..,
Clr2m+p shares cannot be distinguished from the Obf1, .., Obfk shares. This
prevents W , when receiving P and V eri, from revealing the Clrk+1, .., Clr2m+p

values from P by searching the set V eri.

Verification. After receiving the job, W proceeds to verify the correctness of
the payment Pi in the following manner.

– Verify the correctness of the job payment, using the value
tV = SB(H(〈Id(O), Id(W ), SN, v, T 〉)). That is,W verifies that the payment
was generated by O forW , has the serial number SN , is for currency amount
v, is valid for redemption before time T and is authenticated by B.

– Let Shr be the set of payment token shares known to W . Initially, Shr = ∅.
– Select indexes c1, .., cq ↪→R {1, .., 2m+ p}, q < m and send them to O.
O processes each index cj separately in the following manner.

– Identification-1: If the cjth element of the payment set P , denoted by
P (cj), corresponds to an obfuscated payment token share, to, O answers
with the pre-image x of the ringer used for the obfuscation of this value. W
then computes P (cj) ⊕ f(x). If the P (cj) value is valid, the result of this
operation should be of the form (to;H(to)). W first verifies that the value
to has the format to = 〈Id(O), Id(W ), SN, v, T, so〉. W then verifies whether
the set V eri contains B’s signature on the H(to) value. If any of these checks
fails, W aborts the protocol. Otherwise, Shr = Shr∪so, P = P −P (cj) and
V eri = V eri − SB(H(to)).

– Identification-2: If P (cj) is a non-obfuscated payment token of format
(Rndn; sn), O providesW with the SB(H(tn)) value received from B during
the initialization phase, but which it has not sent to W during the initial job
transfer. W checks that H(Id(O), Id(W ), SN, v, T, sn) = VB(SB(H(tn)). If



326 B. Carbunar and M. Tripunitara

this verification does not check, W aborts the protocol. Otherwise, Shr =
Shr ∪ sn.

Note that since q < m < k, O will not be forced to reveal all its k ringers.

Computation. W performs the job Fi = 〈f,Di,Mi〉, by evaluating f on each
x ∈ Di. Let Sol denote the set of elements from the domain Di that satisfy the
condition desired by O. Initially Sol = ∅. For each f(x) computed, W calls the
screener Si, defined as follows.

– If f(x) ∈Mi, then Sol = Sol ∪ x.
– For i = 1..2m + p, compute f(x) ⊕ P (i), where P (i) is the ith element of

the payment set P . If the result is of the form (t;H(t)), with t of the form
〈Id(O), Id(W ), SN, v, T, s〉 and SB(H(t)) ∈ V eri, then do Shr = Shr ∪ s,
P = P − P (i), V eri = V eri − SB(H(t)). That is, an obfuscated share has
been revealed.

At the end of the computation, W sends to O the solution set Sol.

Redemption. IfW finishes the job before the deadline T , it sends the share set
Shr to B, along with the tuple 〈SN, v, T 〉. B retrieves from its local storage the
tuple 〈SN, v, T, t,K, FV 〉 that has the same SN , v and T values and where FV =
{H(tk+1), ..., H(t2m+p)}. B verifies that the request comes from the worker W
whose id is contained in the token t = EK(SB(〈Id(O), Id(W ), SN, v, T 〉)). B
only accepts this redemption request once and if the current time is less than T .
B sends to W the set FV. Let CShr be the set of non-obfuscated shares that
W needs to identify. Initially, CShr = ∅. W performs the following actions.

– For each value in P (there should be 2m+p−k elements left), treat the value
as if being of format (Rndn; sn), where Rndn is a random number and sn
is a payment share. Compute tn = 〈Id(O), Id(W ), SN, v, T, sn〉 and look for
the hash of this value in the set FV. If a match is found, CShr = CShr∪sn.

– Send the CShr set to B.

B verifies the correctness of the shares in CShr, by also looking them up in FV.
B then uses all the shares from the set Shr, plus 2m− |Shr| shares from CShr
to reconstruct t. If it succeeds, it transfers the payment to W ’s account.

Cancellation. If the current time exceeds T , W cannot redeem the payment.
O however, can cancel the payment, by giving t to B. If W has not redeemed
the payment before time T , B reimburses O.

4.1 Computation Overhead

For the bank, the most expensive part of the protocol is computing a signature
on 2m + p payment shares. Considering a slightly outdated computer (Intel
Pentium(R) 4 CPU 3.20GHz) and the values of m and p investigated above,
our OpenSSL implementation performed this operation in 100ms. The overhead



Conditional Payments for Computing Markets 327

imposed by our solution on a worker consists of 2m+ p xor and cryptographic
hash operations for each value from the job’s input domain. On the computing
platform previously mentioned, more than one million MD5 operations can be
performed per second on 64 byte blocks, making this overhead negligible.

4.2 Analysis

We now consider two attacks on our scheme. The goal of an attack is to un-
dermine one of the properties that we discuss in Section 3. We also discuss the
extent to which our scheme is susceptible to these attacks.

Invalid payment shares. In this attack, the outsourcer O attempts to include
invalid payment shares in place of legitimate shares in what is embedded in the
job. The objective is to undermine the payment verifiability property and get an
honest W to accept the job, but not get paid when he completes it.

Claim 1. The probability that an invalid payment shares attack is detected is
lower bounded by 1 − e−c2/2.

Proof. We first observe that for the attack to succeed at all O must replace at
least p + 1 legitimate payment shares with bit strings that cannot be used to
reconstruct the original payment. We recall that the bank does not verify the
well-formedness of the payment shares when it signs them, but instead leaves
this process to W , in the verification step. The verification step consists of the
random revelation of q out of the 2m+p payment token shares. The probability
that any of W ’s challenges chooses an invalid payment share is

1 − (2m− 1)...(2m− q)
(2m+ p)...(2m+ p− q + 1)

> 1 − (
2m− q

2m+ p− q + 1
)q =

1 − (1 − p+ 1
2m+ p− q + 1

)q > 1 − e−(p+1)q/(2m+p−q+1) > 1 − e−c2/2

As O generates more invalid shares, this probability increases quickly. �
Empirical Evaluation. Figure 3 depicts W ’s chance of detecting a malicious
outsourcer that sends p + 1 “bad” shares, when m = 100. We note that as
the values of p and q increase, the probability quickly becomes close to 1. For
instance, even when p=20, for 30 challenges (out of the 220 total shares), the
probability of capturing a malicious O that cheats as much as to preventW from
recovering the payment, is larger than 96%. For p=30, the probability becomes
larger than 99%.

The consequence of Claim 1 is that our scheme is quite robust against the
invalid payment shares attack. The worker W is able to detect the attack in the
query phase with high probability.

Premature payment reconstruction. In this attack, the workerW attempts
to reconstruct a legitimate payment-token based on his knowledge of the re-
dundancy that is built into the payment-splitting scheme. The objective of this
attack is to undermine the oursourcer assurance property.



328 B. Carbunar and M. Tripunitara

probability of
detection

# challenges (q)# additional shares (p)

 5  10  15  20  25  30
 5

 10
 15

 20
 25

 30
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

# additional shares (p)

pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30

(a) (b)

Fig. 3. (a) Probability of detection of malicious outsourcers as a function of the number
of additional shares p and of the number of challenges q, for m = 100. (b) Probability
of detection as a function of the number of additional shares p, for q = 30. For a p = 30
and q = 30, the probability of detecting an outsourcer that corrupts p + 1 shares is
larger than 99%. Note that in this case p = q = 3

√
m.

The attack is carried out as follows. After recovering a certain number of
payment shares that are embedded in the true ringers, W attempts to verify
that the remaining ringers are bogus while simultaneously trying to extract
the payment. Assume that he has k − x payment pieces that he has extracted
legitimately from true ringers (there are a total of k true ringers).

He premises that the remainder are bogus ringers and chooses sets of 2m−k+x
from which he extracts what he believes are payment pieces. He then reconstructs
each set of 2m pieces and checks for duplicates among the reconstructions. If
there are any duplicates, then that is the reconstructed payment he seeks. We

observe that there are at most r =
(

2m+ p− k + x
2m− k + x

)
reconstructions he needs

to perform, and r ≥
(

2m− k + x+ 1
p

)p

. For prudent choices of m, k and p

that satisfy the preconditions we discuss in Section 4, this upper bound on the
number of reconstructions that W must perform for each x is exponential in p.

However, we recognize that this upper bound is loose, particularly if we con-
sider the probability with which W is able reconstruct the legitimate payment
from two different combinations of payment pieces. A detailed analysis of this
probability, and how many trials it is likely to take W to verify that he has
succeeded with a probability, say 50%, is beyond the scope of this paper. We
conjecture that the number of trials is polynomial in our parameters, m, p, k and
x. Consequently, it is possible that the premature payment reconstruction attack
is a legitimate attack on our scheme, and we discuss possible countermeasures
for it below.

We point out that what we call the premature payment reconstruction attack
is related closely to Golle and Mironov [5]’s notion of the coverage constant (see
Section 2.1). The coverage constant is the fraction of the domain Di over which
the worker W computes the function f before his investment in continuing to



Conditional Payments for Computing Markets 329

compute f over the remainder of the domain is higher than his risk of being
found out as not having completed the job.

The notion of a coverage constant does not make sense in our scheme as the
worker no longer depends on verification by the outsourcer before he is paid. He
has all the data he needs to reconstruct the payment; however, it is embedded
in the job.

Extensions
We briefly outline two extensions to our solution, that address the premature
payment reconstruction attack. In the first extension, instead of sending clear-
text shares along with the ringer obfuscated ones, the outsourcer encrypts each
clear-text share before sending it to the worker. During the verification step, the
outsourcer presents to the worker the bank’s signature on each encrypted share
challenged by the worker. The key Kenc used to encrypt the clear-text shares is
essentially a puzzle, consisting not only of all the ringers that the worker needs
to reveal during the computation but also of a random number, whose value the
worker needs to “guess”. That is, the key Kenc = Πk

i=1xi ∗R mod s, for a large
prime s. The xi values are the pre-images of the ringers. Let b be the bit size of
ringer pre-images, where b is a system wide parameter. Its value can be achieved
with both smaller and larger ringer pre-images, by hashing the ringer pre-images
and then computing the residue modulo a publicly known b-bit prime.

The value R has a pre-defined bit size b′, for instance b′ ∈ [20, 50] and its
purpose is to prevent the worker from stopping the job prematurely. This is
achieved by requiring the worker, after finishing the job, to multiply all the
discovered ringer pre-images and then exhaustively search the space 2b′ for the
value R that enables it to correctly decrypt the shares that where not revealed
during the computation. This solution makes it harder for the worker to perform
the premature payment reconstruction attack. That is, if the worker stops the
computation early and has not retrieved all the ringer pre-images, it will have to
also search all the spaces of size 2b for the missing values, whose exact number
is also unknown.

In the second extension, the outsourcer also encrypts the clear-text shares
before sending them to the worker. However, instead of using a symmetric key
algorithm, the outsourcer uses a public key algorithm. Each clear-text share is
encrypted with the public key from a public/private key pair, whose private key
is stored at the bank under the corresponding transaction. During the verification
step, the outsourcer reveals the clear-text share corresponding to the encrypted
share challenged by the worker. Knowledge of the public key enables the worker
to verify the share’s validity. At the end of the job, the worker sends to the bank
not only the shares recovered during the computation but also the ones that are
still encrypted. The bank uses the private key associated with this transaction to
decrypt the remaining encrypted shares and reconstruct the payment. Note that
in this extension, a lazy worker needs to guess the k− x value. If k− x < k− p,
then the bank will be unable to recover the payment and the worker will lose all
credit for the completed percentage of the job.



330 B. Carbunar and M. Tripunitara

5 Related Work

A framework for securely distributing computations in a commercial environ-
ment is proposed in [5] and [6]. A trusted supervisor is assumed to distribute
the computations, verify their correctness and give due payments. Golle and
Stubblebine [6] use computation duplication to provide result verification. In
the same setting, Szajda et al. [11] propose a strategy for distributing redundant
computations, that increases resistance to collusion and decreases associated
computation costs. Instead of redundantly distributing computations.

Golle and Mironov [5] introduce the ringer concept to elegantly solve the prob-
lem of verifying computation completion for the “inversion of one-way function”
class of computations. Du et al. [3] solve this problem by requiring the workers
to commit to the computed values using Merkle trees. The outsourcer verifies
the job completeness by querying the values computed for several sample inputs.
The Merkle tree commitment prevents the workers from changing the outputs
of their computations. Szajda et al. [10] and Sarmenta [8] propose probabilistic
verification mechanisms for increasing the chance of detecting cheaters. In par-
ticular, Szajda et al. [10] propose a solution that works for optimization functions
and Monte Carlo simulations.

Gentry et al. [4] introduce the concept of secure distributed human compu-
tations. While computers are still employed to solve large, difficult problems,
humans can be used to provide candidate solutions for problems that are hard
for computers (e.g., image analysis or speech recognition). This work proposes
the use of payouts not only as a reward for solving problems, but also in the
reverse manner. That is, humans could be asked to solve simple problems (im-
age labeling, CAPTCHA solution gathering, proofreading short texts, etc) as
payment for small Internet services.

Our work extends the ringer concept of Golle and Mironov [5] to solve the out-
sourcer trust problem, that is, when the computation outsourcer is not trusted
to provide the payment after the computation is performed. None of the research
of which we are aware attempts to solve this problem. Essentially, our solution
forces the outsourcer to embed verifiable correct payment shares into the out-
sourced computation. Thus, the worker receives the payment up front, but is
able to retrieve all the payment shares only if it performs a high fraction of the
work.

6 Conclusions

In this paper we study the simultaneity problem in distributed computing mar-
kets. We provide a solution that embeds payments into the jobs outsourced to
workers. Our solution allows a worker to verify the validity of the embedded
payment, before starting the job, but does not allow it to retrieve the payment
before finishing the job. We provide the outsourcer with the guarantee that a
worker will only be able to retrieve a payment if it completes the assigned job,
and the worker with the guarantee that it will retrieve the payment when it
finishes the job.



Conditional Payments for Computing Markets 331

References

1. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract).
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer,
Heidelberg (1994)

2. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

3. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable grid computing. In: Pro-
ceedings of the 24th International Conference on Distributed Computing Systems
(ICDCS) (2004)

4. Gentry, C., Ramzan, Z., Stubblebine, S.G.: Secure distributed human computation.
In: ACM Conference on Electronic Commerce (2005)

5. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Proceedings of
RSA Conference 2001, Cryptographer’s track. LNCS, pp. 425–440. Springer, Hei-
delberg (2001)

6. Golle, P., Stubblebine, S.G.: Secure distributed computing in a commercial envi-
ronment. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 279–304. Springer,
Heidelberg (2002)

7. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2) (1978)

8. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-
tems. In: Future Generation Computer Systems: Special Issue on Cluster Comput-
ing and the Grid, March 18 (2002)

9. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

10. Szajda, D., Lawson, B., Owen, J.: Hardening functions for large-scale distributed
computations. In: Proceedings of IEEE Symposium on Security and Privacy, pp.
216–224 (2003)

11. Szajda, D., Lawson, B., Owen, J.: Toward an optimal redundancy strategy for dis-
tributed computations. In: Proceedings of the 2005 IEEE International Conference
on Cluster Computing (Cluster) (2005)



High-Speed Search System for PGP Passphrases

Koichi Shimizu, Daisuke Suzuki, and Toyohiro Tsurumaru

Information Technology R&D Center, Mitsubishi Electric Corporation,
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

{Shimizu.Koichi@ea,Suzuki.Daisuke@bx,
Tsurumaru.Toyohiro@da}.MitsubishiElectric.co.jp

Abstract. We propose a high-speed passphrase-search system for PGP
using FPGA for the purpose of evaluating PGP’s passphrase-based se-
curity. In order to implement a high-speed search circuit on a single
FPGA, we manage to surmount three major hurdles in PGP. The first
one, multiprecision arithmetics which arises a problem of speed, is cleared
by reducing the number of arithmetics needed. The second one, heavy
iteration of hashing which also lowers the search speed, is settled by
pipelining the hash function. The last one, candidate passphrase genera-
tion which cannot be implemented on hardware, is treated by combining
a PC with the FPGA. We thereby achieve a throughput of 56 Gbps
per FPGA that amounts to 1.1× 105 passphrases per second. Compared
with a fully software-based search, it shows 38 times faster the speed.
We also propose to use an embedded FPGA system and to have part
of software such as passphrase generation, to be run on a CPU inside
the FPGA. We expect the search system to be more self-contained in an
FPGA and thus to have a lower risk of data bus bottleneck between PCs
and FPGAs especially in a massive parallel system where many FPGAs
are connected to one PC.

1 Introduction

Since the DES cracker [1], hardware-based cryptanalysis has attracted much
attention because of its superior speed. Many cryptanalytic machines have been
proposed so far and had big impacts on security issues, both theoretical and
realistic. For example, [2] proposes a device for integer factorization using the
number field sieve, which, if actually built, would be able to factor a 1024-bit
number in a year, at a cost of ten million dollars. [3,4], a series of works by the
same authors, also presents a sieving machine. In [4], the machine with three
Virtex-4 FPGAs and one FPGA-like processor called DAPDNA-2 can factor a
768-bit integer in 270 years. [5] targets E-Passport and realizes a practical attack
on its Basic Access Control keys, using COPACOBANA. COPACOBANA [6] is
a cryptanalytic machine with 120 Xilinx Spartan-3 FPGAs suitable for parallel
computation. According to the authors, it is now possible to search for DES keys
exhaustively within a week with COPACOBANA. Hardware-based cryptanalysis
has its important role today especially when FPGAs are available at fairly low
rates.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 332–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



High-Speed Search System for PGP Passphrases 333

While many of the machines are based on random or exhaustive search,
there are more sophisticated ways to attack specific kinds of cryptographic
systems. For example, dictionary attacks can be employed against systems
which uses passphrase-based authentication since users usually choose meaning-
ful passphrases, such as simple dictionary words or pronouceable ASCII strings,
instead of random byte sequences. Such cryptanalytic methods, however, often
involve operations hard to realize in hardware like creations of variable length
data, database references and pattern-matching, and thus have seldom been im-
plemented on FPGAs.

In view of all that, we focus on PGP, which is a widely used cryptographic
system and employs a passphrase-based key management scheme. We target the
scheme and propose a search system for passphrases which consists of PCs and
FPGAs, typically one PC and many FPGAs connected to it. We choose Virtex-4
FX series by Xilinx as a target FPGA, which embeds a PowerPC or two inside
it, anticipating that we will use it as an embedded platform and thus realize the
sophisticated attacks which need software processing. Our goal with the search
system is to evaluate the security of passphrases by giving a concrete amount of
time and resources required for recovering them.

PGP is a hybrid system which combines symmetric and asymmetric ciphers,
and hash functions to ensure a high level of security and there seem to be three
major hurdles to surmount so as to perform a realistic attack against PGP.

– First, our attack target is a user’s asymmetric private key, which means that
we have to perform multiprecision arithmetics to verify the correctness of
each candidate key in the final stage.

– Second, PGP includes a large number of times of hashing to convert a
passphrase into a symmetric key with which to encrypt the private key.

– Lastly, but not the least, we need to generate candidate passphrases. As
mentioned above, such a procedure cannot be handled by hardware.

Later in the paper, we give detailed explanations of how we manage to resolve
the problems. Here is a brief summary.

The first one raises a problem of speed. Multiprecision arithmetic is fundamen-
tally slower to some orders of magnitude than other cryptographic arithmetic,
and requires fairly large resources. [7] is an example of a high-speed and compact
implementation for modular exponentiation, which, with the use of Virtex-4 DSP
hard macros, can perform a 512-bit modular exponentiation in 0.261 ms and re-
quires only 3937 SLICEs. That is extremely fast for multiprecision arithmetic
but is still too slow to match the speed of symmetric arithmetic. Our strategy
is to reduce the number of multiprecision arithmetics needed for the final ver-
ification and thereby to assign the task to software for less area consumption
(Section 3). As to the second one, the problem is the iteration of a specific pro-
cedure, hashing here. In general, this kind of iteration structure can efficiently
implemented on hardware using a pipeline architecture. We thus employ it to
implement the iteration of hashing. However, it is not to implement a pipelined
hash function that is the very crucial point but to feed data to the pipelined hash
with enough speeds (Section 4). For the last one, we combine PCs with FPGAs.



334 K. Shimizu, D. Suzuki, and T. Tsurumaru

The difficulty in this case lies in data transmission rates of the bus between the
PCs and FPGAs. It is probable that the low rate bus becomes a bottleneck for
high speed cryptanalysis so we need to minimize the data transmission.

Careful investigations of PGP as above allows us to implement a circuit on
a single FPGA to perform a fast search for passphrases. The circuit can search
for 1.1× 105 passphrases per second.

2 Overview of the Search System

OpenPGP [8] is a program designed mainly for encryption and signature gen-
eration of email, which has a long history and is now widespread. As its name
implies, there was the original PGP (Pretty Good Privacy), and OpenPGP is
the standadized version of the PGP. There are now 2 major implementations of
OpenPGP, that is, PGP [9] and GnuPG [10] but in this paper we prefer to use
the simple and well-known term PGP to mean OpenPGP because we do not
discuss anything specific to each implementation.

2.1 Short Description of FPGA

Efficient implementation of algorithms is always a subject of great importance
and interest in the field of cryptograpy, and FPGAs have now become increas-
ingly popular as a device to boost it.

An FPGA (Field-Programmable Gate Array) is a kind of semiconductor de-
vice whose logic blocks are programmable in a sense that users can redesign
or reimplement new logic circuits on it repeatedly. The logic blocks consist of
roughly two basic elements, LUTs (Lookup Tables) and FFs (Flip-Flops). LUTs
are used to implement combinational logic functions, and FFs are to store data.
The programmable nature makes it easy to develop applications and hence it is
now a popular choice to use FPGAs when planning to exploit hardware acceler-
ation for some processes.

There is another popular device called an ASIC (Application-Specific Inte-
grated Circuit). As the name implies, ASICs are developed and optimized for
each specific application, and cannot be reprogrammed once manufactured. They
are generally faster than FPGAs and the prices are cheaper. On the other hand,
the total development cost is higher since it is necessary to set up factories to
produce each particular ASIC, so ASICs tend to be used when the production
volume is high.

FPGAs are usually on extension boards or peripherals, and connected to PCs
via PCI or USB buses, or other communication ports.

2.2 Passphrase-Based Security of PGP

PGP employs a passphrase-based encryption algorithm to store users’ private
keys securely on PCs. The algorithm proceeds as follows. It first lets a user to
choose their passphrase, and then formats the passphrase in some way and hash
it. Second it encrypts the user’s asymmetric private key using the hash value



High-Speed Search System for PGP Passphrases 335

as a symmetric key, and last records the encrypted key in a file called a secret
keyring. For example, under the default settings of GnuPG 1.4.5, a passphrase is
first concatenated with an 8-byte nonce or salt and then processed by the SHA-
256 [11] compression function 1025 times repeatedly. Then its outcome is used
as a key for AES [12] to encrypt a private key of DSA [13] or Diffie-Hellman
key exchange scheme (see Fig. 1). Here the salt is intended to prevent use of
precomputation by attackers.

This scheme helps users manage their private keys with ease at the cost of
some security, say, makes possible search for passphrases, which usually is more
efficient than for symmetric keys themselves. We assume that the searcher can
access the secret keyring, which actually is possible in such cases as follows. One
case is that in an office while an owner of a keyring goes off on a coffee break,
one of their co-workers can just copy it. Another case is that a law enforcement
confiscates a criminal’s PC that contains email encrypted using PGP.

2.3 Search System for PGP Passphrases

From here we think of a search system that consists of one PC and one FPGA.
The PC generates candidate passphrases by software, and the FPGA converts
them into symmetric keys using a fully pipelined hash function, decrypts the
DSA private key with the converted keys and filters out incorrect passphrases.
It should be noted here that this system is probably one of the few applications
where fully pipelined hash architecture works effectively. The reason is that in
most cryptographic applications, block ciphers and multiprecision integer arith-
metics are more heavily used and thus are more critical to the speed of the
system as a whole than hash functions.

Our system achieves a throughput of 56 Gbps, which indicates that a system of
reasonable size, e.g. 100 PCs with 600 FPGAs connected to them, can search for
about 251 passphrases per year. In other words, almost any type of passphrases
that are used in practice can be recovered (discussed in Section 5.2). Compared
with a fully software-based search, our system is 38 times faster.

In actually designing the architecture we find that logics other than the
pipelined hash function also consume a large amount of resources. We hence
have to shrink the circuit to fit in a single FPGA, since if a large circuit is di-
vide into multiple FPGAs, that usually causes a bottleneck in communication.
Details about our optimization techniques are given in Sections 3 and 4. Here is
a brief description of the key points.

– Passphrase filtering algorithm (Section 3).
In order to select likely correct passphrases out of candidates, the format
of private key packets is checked. By doing this, we can reduce the number
of candidates, and as a result the number of multiprecision arithmetics, to
one out of 2160. The rate is so low that it suffices to perform multiprecision
arithmetics with software by a PC instead of with hardware by an FPGA.
It contributes to minimize the size of the architecture and also helps to cut
down the amount of data transmitted from the FPGA to the PC.



336 K. Shimizu, D. Suzuki, and T. Tsurumaru

– Efficient pipelined architecture (Section 4).
On top of the hash architecture being fully pipelined, the passphrase-padding
architecture, which feeds data to the hash circuit, also needs pipelining ef-
ficiently so that the feeding speed can catch up with that of the hash. It is
even more difficult to implement it than the hash itself because if we employ
a straightforward implementation, we get too large a circuit to place in a
single FPGA. By making a full use of Distributed Memory (dual port RAM
using LUT), we succeed in squeezing this to 1/4, placing it to a single FPGA
and also making it faster.

– Balance between software operations in PC and hardware operations in
FPGA
It is not related to the circuit size but crucial to the high speed search so
worth mentioning here. As already mentioned, the total throughput of the
system can be spoiled by the bus bottleneck. The data bus used is reasonably
supposed to be 32-bit 33MHz PCI or PCI Express x1 as of 2008. There is
much chance that the fairly low throughput, 1056Mbps in the former case
or 2.5Gbps in the latter, spoils the potential of high-speed FPGAs. So we
carefully assign each of the PGP operations to a PC or an FPGA to minimize
the necessary data transmission between the PC and the FPGA (Fig. 1).

We would like to point out that the system proposed here can be used for
almost any combination of cryptographic algorithms supported in PGP (e.g.,
CAST-128, SHA-1, RIPEMD besides SHA-256 and AES implemented here), by
simply rewriting the configurations inside FPGAs. It is because the passphrase
hashing algorithms of PGP are the same regardless of the choices, and pipelined

S2K padding

Passphrase filtering

Decryption
AES-256 in CFB

S2K hashing
SHA-256 compression
1025 times

DSA secret key (encrypted)

hash value
used as a key

SHA-1 checksum

Passphrase
generation

Multipe precision
arithmetics of DSA

Iteration of data
until 65536 bytes

Software Hardware

one out of 2
160

data bus

Fig. 1. The procedure to encrypt the secret keyring, under the default settings of
GnuPG version 1.4.5.



High-Speed Search System for PGP Passphrases 337

structures can be implemented for any hash functions within the similar order
of resources of FPGAs.

3 PGP Algorithms in Detail

In this section we describe in detail the encryption methods of PGP. That will,
as a result, explain the decryption methods of our search. We also present an
algorithm that filters out incorrect candidate passphrases before performing mul-
tiprecision integer (MPI) arithmetics on them. It can reduce the number of can-
didates by 2−160 and thereby the number of MPI arithmetics needed. In this
paper, we will call it the passphrase filtering algorithm.

In the rest of this paper, we basically assume the default settings of GnuPG
version 1.4.5. Under the settings, DSA and Diffie-Hellman are used for digital sig-
natures and for key exchanges, respectively. While the private keys of the two are
encrypted with the same passphrase, we decide to attack the DSA one since it is
shorter in length. Although CAST-128 and SHA-1 are the defaults as a symmetric
cipher and a hash function, we use AES and SHA-256 instead considering the in-
dividual security. It should be noted here that the generality is not lost here since
essentially the same attack applies to other choices of algorithms.

3.1 Passphrase Hashing

In PGP, passphrases are converted to keys of a block cipher by methods called
string-to-key (S2K). There are three types of S2K : simple S2K, salted S2K and
iterated and salted S2K. In our settings, iterated and salted S2K is used.

In this algorithm, a passphrase is first concatenated with a ‘salt’, a nonce
of 8 bytes. The salted passphrase (salt||passphrase) is then concatenated with
itself repeatedly to form a string of 65536 bytes (See Fig. 3). This procedure
is called iteration (OpenPGP[8]). The salted and iterated passphrase is subse-
quently input to SHA-256 to produce a key K of AES. Since the message block
size of SHA-256 is 64 bytes, calculations of the SHA-256 compression function
is performed 1025 times.

We here denote the concatenation of strings S1, S2, · · · , Sn as
(S1||S2|| · · · ||Sn). We will also use the notation (B1, B2, · · · , Bm) to mean
the concatenation of bytes B1, B2, · · · , Bm.

3.2 Encryption Using a Block Cipher

Next using the obtained key K, PGP encrypts a private key of DSA. The private
key is bundled as a packet P = (LM ||M ||S), each block of which means as
follows.

– LM
The bit length of M . LM = (LM1, LM2) (2 bytes)

– M
The DSA private key. M = (M1,M2, . . . ,Ml) (l bytes) where l ≤ 20 due to
the specification[13].



338 K. Shimizu, D. Suzuki, and T. Tsurumaru

– S

A checksum of (LM ||M). The actual content and size varies according to
the PGP settings. In one case, it is a simple additive sum of all bytes of LM
and M mod 65536, and the size is 2 bytes. In the other case, it is a SHA-1
hash value of (LM ||M) and the size is 20 bytes.

Here all the numbers are encoded in big-endian order. The total length of P is
42 bytes or less, which amounts to three blocks of AES. We will call P a private
key packet in what follows. The secret keyring contains the initial vector IV of
AES, the ciphertext C = EAES(IV, P ), and the salt. Here EAES denotes AES
encryption in CFB mode.

3.3 Passphrase Filtering Algorithm

In order to find the correct passphrase, the ciphertext C is decrypted with keys
made from trial passphrases and then the plaintext counterparts are tested
through public-key MPI arithmetics. As shown later our search circuit fits in
a single FPGA yet is huge so we choose to exclude an MPI circuit from the
FPGA and to include a software one in the PC. That is made possible by the
fact that a large number of passphrases can be filtered out checking the valid-
ity of them before performing MPI in the final stage. Actually only one set of
MPI arithmetics per 2160 passphrases is needed. Doing such a small portion with
software in the PC does not at all affect the overall performance.

Let us suppose that we decrypt the ciphertext C and obtain the plaintext
P (ph) that corresponds to a passphrase ph. To check the validity of ph, we focus
on the format of P (ph) as a private key packet. As mentioned in Section 3.2, a
private key packet includes a checksum in 2 ways, that is, a 2 byte additive sum
or 20 byte SHA-1 hash value of the first 22 byte part of the key. We explain the
algorithm to filter out incorrect passphrases for each case.

Case 1: Additive sum. In this case, there are three criteria for passphrase
filtering as given below and those enable us to reduce the number of candidate
passphrases to one out of 232.

1. LM : Due to the property of the CFB mode, the byte lengths of P and the
ciphertext C = EAES(IV, P ) are equal (cf. Fig. 2). Thus

"(LM + 7)/8# = |M | = |C| − 4 , (1)

where |A| means the byte length of A.
2. First byte of M : Since the integer M is given in big-endian order, the bit

pattern of its first byte M1 is specified by LM . For m = LM mod 8, M1
must be of the following form.

M1 = (08−m mod 81∗ · · · ∗)2. (2)

3. Checksum S: This must also be consistent.



High-Speed Search System for PGP Passphrases 339

Plaintext

Ciphertext Discarded

Block Cipher

**a2a1a0 ***

**P2P1P0 ***

**C2C1C0 ***

Output of The
Previous Block

(The Last Block)

Fig. 2. CFB mode. An example where the last block of the plaintext is 3 bytes. The
bytes indicated by ‘*’ are not necessary in recovering the plaintext and thus may be
discarded. Consequently, the ciphertext has the same byte length as its plaintext.

The above three are examined one by one and once an inconsistency is de-
tected, the FPGA moves on to the next candidate. The conditions 1 and 2 re-
duces the number of candidates to 2−16, as can be seen as follows. For each
value of m = LM mod 8, "(LM + 7)/8# takes 213 values; 0, 1, · · · , 213 − 1
when m = 0 and 1, 2, · · ·213 when m �= 0, with the equal probability 2−13.
Eqn(1) is therefore satisfied with probability 2−13. For Eqn(2), the probability
is (1/28−m mod 8) · (1/2), and thus the overall probability Pr is given by

Pr =
1
8
·

7∑
m=0

(
1

213 · 1
28−m mod 8 · 1

2

)
= 2−16(1 − 2−8) < 2−16.

Together with the checksum, these conditions reduce the number of candidate
passphrases to one out of 232.

Case 2 : SHA-1 hash value. This is the default under GnuPG 1.4.5. It is very
simple yet highly effective for passphrase filtering. The probability for a random
160-bit string to be equal to the SHA-1 hash value of some given input, (LM ||M)
in this case, is 2−160, which directly means that we can reduce the number of can-
didate passphrases to one out of 2160. Taking into account Eqns (1), (2) we can
reduce the figure further to 2−176, although we think 2−160 is satisfactory for the
purpose and thereby did not include the 2−16 logic in the circuit.

4 Implementation Architecture

As mentioned in Section 1, we use a pipelined hash architecture for passphrase
hashing. The optimization techniques of the hash logic will be discussed in
Section 4.2.

Before that, we describe the passphrase padding logic in Section 4.1, which
feeds the salted and iterated passphrases (c.f.. Section 3.1) into the hash function.
In actually designing the architecture inside the FPGA, we find that logics other
than the pipelined hash function consume a large amount of resources and the
largest of them is the padding circuit.



340 K. Shimizu, D. Suzuki, and T. Tsurumaru

Hash Function
(Pipelined)abcabcabc…

defdefdef…

xyzxyzxyz…

…

“abc”

“def”

“xyz”

…

defdefdef…

1 Clock

1 Clockiterate

abcabcabc…

64 bytes

Passphrase

Fig. 3. The image of the ‘iteration’ of passphrases. Each passphrase is concatenated
with itself repeatedly and made into a string of 65536 bytes plus padding of SHA-256,
i.e., 1025 blocks of SHA-256 compression function. Each block is then input to the
hash function. The salt is omitted here for the sake of simplicity. In designing the
passphrase padding logic, iterating a passphrase is allowed to take multiple clocks,
while each buffered string must be fed into the hash pipeline within one clock.

4.1 Passphrase Padding Logic

This logic feeds the salted and iterated passphrases into the pipelined hash func-
tion. It concatenates the salted passphrase, which is received from the PC, with
itself repeatedly to make blocks of 64 bytes to be processed in the hash function
(see Fig. 3). Hereafter, we will call this logic the passphrase padding logic.

The difficulty in designing this is: it must generate a 64 byte block in every
clock cycle to catch up with the pipelined hash function and at the same time
be small enough to fit in a single FPGA. To meet both of these requirements,
we introduce a new serial-parallel converter which consists of dual port memory
using LUT (hereafter, Distributed Memory).

The most straightforward construction for such padding circuit would be a
serial-parallel logic using flip-flops (FFs) for storing candidate passphrases, fol-
lowed by shift registers with selectors that feeds the iterated passphrases into
the hash function. However, this type of architecture is in fact even larger than
the pipelined hash function and thus the whole circuit will most likely not fit
into a single FPGA. The numbers of FFs and LUTs needed to implement the
shift registers and selectors are at least 32,768 and 16,384 respectively.

So we adopt here a structure that makes use of Distributed Memory, which
enables us to implement the padding circuit with approximately 6,000 FFs and
10,000 LUTs. The main idea is as follows. We first divide the structure into two
main blocks: that is (see Fig. 4):

– passphrase iterator (PIT): The salted passphrases, as originally received from
the PC, are stored in Block SelectRAMs [17]. This logic iterates the salted
passphrases by controlling the read addresses of the Block SelectRAMs. Note
that only one byte from each passphrase is output to the IPB per clock.

– iterated passphrase buffer (IPB) : This circuit stores the iterated passphrases
and then outputs them to the hash circuit. It is allowed to take multiple
clocks in receiving a passphrase from the PIT, but it must output a block of
64 bytes to the hash circuit in every clock.



High-Speed Search System for PGP Passphrases 341

Next we change the flow of bytes of each passphrase (look at the bottom of
Fig. 4). Namely, the passphrases change their alignment in the IPB depending on
the packet. For instance, the bytes from each passphrases are aligned diagonally
in the IPB for the first packet, and vertically for the second and so forth. Under
this construction, PIT only needs to output one byte from each passphrase within
each clock, thus it can be formed by Distributed Memory.

Note that the number of LUTs necessary for the PIT is only 1/8 of the number
of FFs required by the straightforward one. On top of this, by introducing the
PIT, the 64−1 selector is replaced by two rotation shifters which have a smaller
area and can easily be pipelined. In general, n − 1 selector requires the area of
O(n) whereas rotation shifter needs only O(log n).

We used 64 sets of Distributed Memory for the IPB, since the input to SHA-
256 is 64 bytes. Thus for efficient implementation, SHA-256’s pipeline stage needs
to be a multiple of 64. Hence we designed SHA-256 with 128 pipeline stages (see
next subsection).

4.2 Pipelined Hash Function

Since this part is critical to the performance of the whole system, our goal is to
maximize the throughput as much as possible. Efficient implementations of SHA-
256 on FPGAs have already been given using a loop architecture [14,15,16]. We
here adopt a pipeline architecture since it establishes much greater throughputs.
As mentioned in the previous subsection, our pipeline architecture consists of

<<<20 <<<21 <<<25

rotation shifter

<<<

Dual port memory using LUT
depth 64

8

512

Buffer
using Block SelectRAM

Read Address
Controller

32

8 8DATA0[0]
DATA0[1]

DATA0[63]

New Data

DATA1[0]
DATA1[1]

DATA1[63]

DATA63[0]
DATA63[1]

DATA63[63]

<<<

8

Passphrase 
Iterator

…

“ 123 ”

“ def ”

“ abc ”

…

“abc” Hash

“def”
“123”

…

<<<

a
d
1
���

���

b
e
2
���

���
d3……

…af2…
……ce1

………bd
f………

b

a a
b
c
a
b

d
e
f
d
e

<<<

Iterated Passphrase Buffer

Fig. 4. The passphrases changes its alignment in the IPB depending on the packet.
In this example, they are located diagonally in the IPB. As soon as the 64 bytes of
an iterated passphrase is buffered, it is transferred to the hash function, one block per
every clock.



342 K. Shimizu, D. Suzuki, and T. Tsurumaru

Constants
Last block (constant)

512256

65 stages

H

Shift registers (63 stages)

Message block

A B C D E F G H

A B C D E F G H

Ch

Maj

0

1

K
W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15K
W

1

0

Compression function of SHA-256 Message scheduling of SHA-256

Fig. 5. Pipelined SHA-256 architecture

128 stages to make the passphrase padding efficient. Out of the 128 stages, 66
are actually doing the hash calculation and the rest are shift registers using
SRL16 [17], which is a shift-register LUT. One LUT functions as a 16-bit shift
register.

The block diagram is given in Fig.5. In general, maximum speeds in pipeline
architectures are achieved when each stage has an equally balanced delay and bus
widths between stages are narrow. In the case of SHA-256, simply implementing
the compression function as one pipeline stage is good, in particular considering
the area consumption.

Another problem with a design of a pipelined architecture is in reducing the
number of registers. Obviously, we need to have at least one 256-bit register to
store the internal state and one 512-bit register to store the message schedule
in each stage of SHA-256. This means that when pipeline stages are placed for
each step function, registers of at least 64 × (256 + 512) = 50, 688 is necessary,
which amounts to 60% of FFs contained in the target device.

On the other hand, LUTs can be used as a shift register without the reference
of the value on the way (hereafter, they are called SRLs (Shift register LUTs)).
That is, we can use SRLs instead of FFs if the purpose is just to generate
latencies, while it cannot form a serial-to-parallel conversion. Only part of the
registers are referred to for the message scheduling in each clock cycle. To be
exact, only one word (a four-byte block) is read from step 0 to step 15 and
four words are after step 16. Therefore, we can reduce the number of FFs by
instead using SRLs for those sectors that are not referred to for a few stages in
a row.



High-Speed Search System for PGP Passphrases 343

4.3 Other Logics

We have no challenging requirements for other logics so do not consider
any particular optimization for them. Below are the brief summary of their
implementation.

AES decryption: The AES circuit uses the SHA-256 outputs as decryption
keys. The pipelined SHA-256 outputs 128 hash values in every 128×1025 clock
cycles, one value in 1025 cycles on average. On the other hand the size of the
asymmetric private key to be decrypted is 42 bytes, which amounts to three
blocks of AES. The AES is hence allowed 1025 cycles to decrypt three blocks with
each key. The requirement is very easy and we hence adopt a loop architecture
where there is one AES core with a quarter round implemented in order to
minimize the area consumption.

Passphrase filtering: As we describe in Section 3.3, we use SHA-1 hash values
to filter passphrases. The data to be hashed is 22 bytes and that amounts to one
block as an input to SHA-1. In the same way as the AES decryption, we have
1025 cycles to hash one block and to compare values. That is still easy and we
implement the circuit in a straightforward manner.

5 Evaluation

5.1 Performance of the Circuit

Our target device is Virtex-4 FX100-10 and we use Synplify Pro 8.6.2 for syn-
thesis, and Xilinx ISE 9.2.04i for place and route. The results of the evaluation
are given in Table 1. We must make comments on the figures of area. The upper
part of the table shows the evaluation results by parts and the lower part as a
whole. Due to the boundary optimizations by the development tools, the area
consumption as a whole becomes less than the sum of each part.

The pipelined SHA-256 operates at 118 MHz, processing 512 bits of input
in every cycle and one passphrase in 1025 cycles. That means it achieves the
throughput of 56 Gbps and can test 1.1×105 passphrases per second. This figure
shows that our circuit is at least 38 times faster than a PC with a Pentium 4

Table 1. Performance of the circuit

Area
Algorithm

LUTs FFs RAMs
Frequency (MHz)

Passphrase Padding 8,665 5,210 16 145†

SHA-256 44,989 25,384 0 118
the Others 2,006 1,077 11 133†

Total∗ 51,573 32,690 27 118
(out of) (84,352) (84,352) ( 376)

† To be faster than 118MHz is enough.



344 K. Shimizu, D. Suzuki, and T. Tsurumaru

Table 2. Search speed by software and by hardware

Implementation passphrases/sec

Software 3,001
Hardware 115,121

3.8GHz running the fastest SHA-256 implementation up to now [19]. We say ‘at
least’ because we only take into account the SHA-256 to assess the performance
of the software search. Iteration of SHA-256 is the heaviest part of the PGP
passphrase scheme and hence decides the speed of the search system, but other
parts such as a block cipher certainly count. While they can run in parallel with
SHA-256 in FPGAs they cannot in PCs and so the speed difference becomes
larger than 38 times.

In Section 5.2, we give a concrete example of an actual passphrase search.

5.2 Concrete Example Figures of the Search System

Now we give a concrete and realistic example of our search system and evaluate
the security strength of PGP passphrases. First we show in Table 2 how many
passphrases per second can be tested by software and by hardware. The hardware
refers to our circuit and the software is the one mentioned in ther previous
section.

To give an illustration of the actual speed, let us consider how many devices
are needed to find correct passphrases in a year under 3 possible conditions.
One condition is that we search for passphrases of 3 dictionary words from
the vocabulary of about 20,000 that adult native speakers of English actively
use on average [20], another is 7 random ASCII characters, and the other is
3 dictionary words from COD (Concise Oxford English Dictionary), which has
240,000 entries in its eleventh edition. In short we give three cases each of which
has a total of 200003 = 8×1012 passphrases, 947 � 6.5×1013 ones, and 2400003 �
1.4 × 1016 ones. The evaluation result is shown in Table 3. The table tells us
that passphrases of 3 words from our daily vocabulary and of 7 random ASCIIs
are easily broken by a highly realistic FPGA-based system using our circuit.
They also are fairly probable to be broken by software. In case of 3 dictionary
words from COD, even an FPGA-based system seems unrealistic but still not
necessarily impracticable while a software-based system is totally impossible.

Table 3. The numbers of devices needed to find correct passphrases in a year

Condition (search for what) FPGAs needed PCs needed

3 dictionary words (from 20,000) 2 84
7 random ASCII characters 17 685
3 dictionary words (from 240,000) 3,807 146,070



High-Speed Search System for PGP Passphrases 345

We take up ‘Diceware’ [21] as another interesting example. It is a passphrase
generation software and has a list of 7,776 words to choose words from, in the
hope that it makes passphrases which are easy to memorize and strong at the
same time. If picking 4 words out of the list, there are 77764 possible passphrases,
which can be searched for within a year with 1,007 FPGAs. The amount seems
highly realistic so in order to secure an email, at least 5 words from the list must
be chosen to form a passphrase. An example passphrase of this kind is

cleft cam synod lacy yr ,

which is not always easy for most people to memorize.

5.3 Hints to Improve the PGP Security

PGP has heavy iteration of hashing as a countermeasure to exhaustive search.
It sure is effective against sotware-based search but does not do as good as
expected against hardware-based search as seen thus far. As a result, although
the S2K circuit is overwhelming in its size, we manage to implement a whole
search circuit on a single FPGA, achieving a high throughput at the same time.

But a small bit of tricks does do good to improve security. Instead of using
the simple iteration structure, making the S2K algorithms more complex is ef-
fective while it does not necessarily sacrifice the performance as a cryptosystem.
For example, using multiple hash algorithms or more complicated padding rules
makes the implementation size dramatically larger to be beyond the limit of
one FPGA. We mention here again dividing a large architecture into multiple
FPGAs greatly reduces the throughput.

6 Using Embedded FPGA Systems for Cryptanalysis

As mentioned earlier, when a cryptanalytic method includes procedures not
suitable for hardware, PCs are generally used to do them through software
(Fig. 6 (a)). In that case, the data bus between the PC and the FPGA may
arise as a bottleneck since if implementing a cryptographic function on FPGAs
with pipeline architecure, a throughput of more than some Gbps can easily be
gained, which throughput exceeds the bus transmission limit, as can be seen in
our search circuit where pipelined SHA-256 achieves the throughput of 56 Gbps.

In case of PGP, such a bottleneck does not actually appear because of the
heavy S2K iteration. One passphrase is transmitted through the bus, and then
concatenated with itself and expanded to 1024 times the original size inside the
FPGA, which situation balances the unevenness between the low-speed bus and
the high-speed FPGA. We can hence realize a high-speed search system with
all the software run on the PC. But the bottleneck problem still remains when
parallelizing the FPGA operation. Due to the narrow data bus, it is difficult to
connect many FPGAs to one host PC. If one PC can host only one FPGA, for ex-
ample, 1,000 PCs are needed for 1,000 FPGAs (Fig. 6 (α)), which is unrealizable
with respect to space and cost.



346 K. Shimizu, D. Suzuki, and T. Tsurumaru

PC FPGA board

Hardware operations

PC FPGA board

(a) Software run in PC (b) Part of software run in FPGA

FPGA
board

Host PC

FPGA
board

Host PC

FPGA
board

Host PC

Host PC
FPGA
board

FPGA
board

FPGA
board

(α) One PC to one FPGA (high cost) (β) One PC to several FPGAs (low cost)

Parallelization

initializer

controller

passphrase
generation

Hardware operations

passphrase
generation

initializer

controller

passphrase seeder

abcd

Seeds for passphrases
(small data transmission)

abcd,Abcd,aBcd,abCd,abcD,ABcd,AbCd,AbcD,...

Passphrases
(large data transmission)

abcd,Abcd,aBcd,abCd,
abcD,ABcd,AbCd,AbcD

Fig. 6. Combination system of PCs and FPGAs

If using the simple S2K method where there is no heavy iteration of
passphrases, the bottleneck immediately appears whether or not parallelizing
the operation. Such situations can easily happen in many cryptographic systems
other than PGP, such as the familiar passphrase-based scheme Microsoft Office
employs, in which each passphrase is hashed only once.

That is the reason we put an eye on Virtex-4 FX’s which embed a Pow-
erPC 405 CPU (or two). Utilizing the CPU enables a structure called an embed-
ded FPGA system (Fig. 6 (b)), where part of software is operated by an FPGA
and thus the communication between a PC and an FPGA becomes small, since
it is only necessary for initialization and for controlling the FPGA. That settles
the bottleneck problem and enables us to develop more flexible cryptanalytic
devices which enjoys the high-speed operations of the FPGAs and to parallelize
the operation easily (Fig. 6 (β)).

7 Conclusion

In this paper, we propose a passphrase-search system for PGP using pipelined
hash architecture with the throughput of 56 Gbps. A system with one Virtex-4
can search for 1.1× 105 passphrases per second, which means that if we build a
system of reasonable size, for example, with 1,000 FPGAs, we can search for more
than 251 passphrases per year. It means that almost any type of passphrases used
in practice can be recovered. We can deal with almost any sort of passphrases
simply by rewriting generator software since candidate passphrases are generated
by PCs. For example, simple dictionary words, dictionary words with additional



High-Speed Search System for PGP Passphrases 347

ASCII characters, or gramatically correct sentences up to a certain number of
words are among such passphrases as can be well treated.

When attacking other passphrase-based cryptosystems such as the one Mi-
crosoft Office employs, a problem arises. The data bus between PCs and FPGAs
is probable to be a bottleneck since most of the cryptosystems do not have an
iteration structure that PGP has. Hashing only one block is extremely light and
can be implemented to have a high throughput that exceeds the bus transmis-
sion limit. So we propose to use an embedded FPGA system for cryptanalysis.
Assigning part of software to CPUs inside the FPGAs, we can reduce the data
transmission and thus clear the bottleneck.

References

1. The Electric Frontier Foundation, Cracking DES: Secrets of Encryption Research,
Wiretap Politics, and Chip Design. O’Reilly & Associates, Inc., Sebastopol (1998)

2. Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Devices. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg
(2003)

3. Izu, T., Kogure, J., Shimoyama, S.: CAIRN 2: An FPGA Implementation of the
Sieving Step in the Number Field Sieve Method. In: Paillier, P., Verbauwhede, I.
(eds.) CHES 2007. LNCS, vol. 4727, pp. 364–377. Springer, Heidelberg (2007)

4. Izu, T., Kogure, J., Shimoyama, S.: CAIRN 3: An FPGA Implementation of the
Sieving Step with the Lattice Sieving. In: Proc. of the 2007 Special-purpose Hard-
ware for Attacking Cryptographic Systems (SHARCS 2007), pp. 33–39 (2007)

5. Liu, Y., Kasper, T., Lemke-Rust, K., Paar, C.: E-Passport: Cracking Basic Ac-
cess Control Keys. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS,
vol. 4804, pp. 1531–1547. Springer, Heidelberg (2007)

6. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

7. Suzuki, D.: How to Maximize the Potential of FPGA Resources for Modular Ex-
ponentiation. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 272–288. Springer, Heidelberg (2007)

8. Network Working Group, OpenPGP Message Format, RFC 4880 (2007),
http://tools.ietf.org/pdf/rfc4880.pdf

9. PGP Corporation Home Page, http://www.pgp.com/
10. The GNU Privacy Guard,

http://www.gnupg.org/

11. NIST, Secure Hash Standard (SHS), FIPS-PUB 180-2 (2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

12. NIST, Advanced Encryption Standard (AES), FIPS-PUB 197 (2001),
http://csrc.nist.gov/publications/fips/fips197/fips197.pdf

13. NIST, Digital Signature Standard (DSS), FIPS-PUB 186-2 (2000),
http://csrc.nist.gov/publications/fips/fips186-2/

fips186-2-change1.pdf

14. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 Hardware
Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 298–310. Springer, Heidelberg (2006)

http://tools.ietf.org/pdf/rfc4880.pdf
http://www.pgp.com/
http://www.gnupg.org/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips197/fips197.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf


348 K. Shimizu, D. Suzuki, and T. Tsurumaru

15. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 family of hash functions on FPGAs. In: Proc. of the 2006 IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and. Architectures
(ISVLSI 2006), pp. 317–322 (2006)

16. Helion Technology, http://www.heliontech.com/
17. Xilinx, Inc., Virtex-4 User Guide (2007),

http://www.xilinx.com/support/documentation/user guides/ug070.pdf

18. Xilinx, Inc., Virtex-4 Family Overview (2007),
http://www.xilinx.com/support/documentation/data sheets/ds112.pdf

19. Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

20. Goulden, R., Nation, P., Read, J.: How large can a receptive vocabulary be? Ap-
plied Linguistics 11(4), 341–363 (1990)

21. Reinhold, A.G.: The Diceware Passphrase Home Page (2003),
http://world.std.com/∼reinhold/diceware.html

http://www.heliontech.com/
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://world.std.com/~reinhold/diceware.html


Workload Characterization of a Lightweight
SSL Implementation Resistant to Side-Channel

Attacks

Manuel Koschuch1, Johann Großschädl2, Udo Payer3, Matthias Hudler1,
and Michael Krüger1

1 FH Campus Wien – University of Applied Sciences,
Daumegasse 3, A–1100 Vienna, Austria

{manuel.koschuch,matthias.hudler,michael.krueger}@fh-campuswien.ac.at
2 University of Bristol, Department of Computer Science,

Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom
johann.groszschaedl@cs.bris.ac.uk

3 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

udo.payer@iaik.tugraz.at

Abstract. Ever-growing mobility and ubiquitous wireless Internet ac-
cess raise the need for secure communication with devices that may be
severely constrained in terms of processing power, memory capacity and
network speed. In this paper we describe a lightweight implementation
of the Secure Sockets Layer (SSL) protocol with a focus on small code
size and low memory usage. We integrated a generic public-key crypto
library into this SSL stack to support elliptic curve cryptography over
arbitrary prime and binary fields. Furthermore, we aimed to secure the
SSL handshake against side-channel attacks (in particular simple power
analysis) by eliminating all data-dependent or key-dependent branches
and memory accesses from the arithmetic operations and compare the
resulting performance with an unprotected implementation. Our light-
weight SSL stack has only 6% of the code size and RAM requirements
of OpenSSL, but outperforms it in point multiplication over prime fields
when no appropriate countermeasures against side-channel attacks are
implemented. With such countermeasures, however, the execution time
of a typical SSL handshake increases by roughly 50%, but still completes
in less than 160 msec on a 200 MHz iPAQ PDA when using an elliptic
curve over a 192-bit prime field.

Keywords: Network Security, Efficient Implementation, Elliptic Curve
Cryptography, Side-Channel Analysis, Performance Evaluation.

1 Introduction

Traditional research in network security has assumed the endpoints of a commu-
nication channel to be secure and only considered an adversary trying to attack
the communication itself. Possible attacks include eavesdropping on the channel

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 349–365, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



350 M. Koschuch et al.

and the forging, injection, modification, and replay of messages [18]. With the
paradigm shift to more and more mobile devices being used to access networks
like the Internet, this adversary model must be adapted to incorporate attacks
on the communication endpoints themselves too, since most mobile devices are
not tamper-resistant. For example, an adversary could try to obtain the secret
key used to encrypt the communication by analyzing side-channel information
(e.g. timing or power) leaking from a device [25]. Therefore, secure networking
does not only require secure protocols, but also a secure implementation of these
protocols and the involved cryptographic algorithms.

The current “de-facto” standard for secure communication over an insecure,
open medium like the Internet is the Secure Sockets Layer (SSL) protocol [12]
and its successor, the Transport Layer Security (TLS) protocol [11]. Both use a
combination of public-key and secret-key cryptographic techniques to ensure the
confidentiality, integrity, and authenticity of communication between a client and
a server. Traditionally, the SSL protocol has employed RSA or Diffie-Hellman
(DH) for key establishment, and RSA or DSA for authentication. However, all
these cryptosystems are highly computation-intensive, which can result in an
unacceptably long delay when establishing an SSL connection on a mobile device
with restricted processing capabilities and memory resources [37]. Elliptic curve
cryptography (ECC) [4] is a viable alternative to traditional public-key schemes
like RSA or DH because of its higher level of security per bit: a properly chosen
160-bit ECC system is claimed to be as secure as a 1024-bit RSA system [16]. In
2006, the TLS protocol was revised to include ECC for public-key services, and
since then, cipher suites using ECDH for key exchange and ECDSA for authen-
tication can be negotiated during the handshake phase [6].

Any security protocol is only as secure as its underlying cryptographic algo-
rithms. From a mathematical point of view, the security of both ECDSA and
ECDH relies on the Elliptic Curve Discrete Logarithm Problem (ECDLP), which
is supposed to be intractable when a suitable elliptic curve group of sufficiently
large order is used [4]. However, cryptanalytic attacks are, in general, not the
biggest threat to the security of SSL, in particular if an attacker has access to the
device on which the protocol is executed so that he can monitor side-channel
information like running time or power consumption. The information leaked
through these side channels can be used to mount different kinds of attacks such
as timing analysis, Simple Power Analysis (SPA), or Differential Power Analysis
(DPA) [20,21]. In fact, the “weakest link” of SSL is often the implementation
of the cryptographic algorithms, which has been demonstrated by several suc-
cessful side-channel attacks on unprotected (or insufficiently protected) versions
of OpenSSL [1,3,7,8].

The ECC algorithms executed during the handshake phase of the SSL/TLS
protocol are potentially vulnerable to timing analysis, SPA, and DPA, whereby
the concrete feasibility of each of these attacks depends on the cipher suite and
whether the client or the server is targeted. For example, the ECC cipher suites
from [6] use either ephemeral or static ECDH keys; in the former case it suffices
to protect the ECDH implementation against SPA attacks, while in the latter



Workload Characterization of a Lightweight SSL Implementation Resistant 351

case also countermeasures against timing analysis and DPA attacks need to be
effective. Fortunately, there exists a rich literature dealing with the protection
of elliptic curve cryptosystems against timing analysis, SPA, and DPA attacks
[2,5,16]. Each of the proposed countermeasures has its specific advantages and
disadvantages with respect to execution time, memory requirements, and code
size. While the performance of the different countermeasures has been analyzed
in detail (at least theoretically by counting the number of field operations), their
impact on memory footprint and code size is still relatively unexplored.

Contributions. In the present paper we analyze the workload characteristics
of a “lightweight” SSL implementation optimized for small code size and low
memory footprint. In addition, we provide a detailed breakdown of the individual
phases of an SSL handshake to determine how much influence the cryptographic
operations actually have on the overall running time. We furthermore evaluate
the impact of side-channel countermeasures on the performance, code size, and
memory footprint of our SSL implementation. In the past, the cost of timing
and SPA resistance for ECC has only been studied on basis of a single scalar
multiplication. However, in practice, a cryptosystem is typically not an applica-
tion per se, but part of an application like SSL, TLS, S-MIME, etc. Thus, the
important question is how a certain countermeasure impacts the characteristics
of the whole application (e.g. its performance or memory consumption) because
this allows one to draw conclusions about the quality and/or suitability of the
applied countermeasure. For example, what does it mean if a countermeasure
increases the execution time of ECDH by a factor of two? Will the delay of the
SSL handshake increase by the same factor? Or will the delay just increase by a
factor of 1.5? Or will there be no additional delay at all? How do side-channel
countermeasures impact the code size and memory footprint of the SSL stack?
Is it possible to achieve side-channel resistivity without sacrificing code size and
memory footprint? All these questions have not been addressed in the past; with
the present paper we intend to fill this gap.

The work described in this paper is based on MatrixSSL [31], a lightweight
SSL implementation written in ANSI C whose source code is available under
the GNU General Public License (GPL). MatrixSSL in its original form features
only RSA as public-key primitive, but not ECC. Therefore, we implemented a
generic public-key crypto library which supports traditional cryptosystems like
RSA, DH, as well as ECC over arbitrary prime and binary extension fields. We
integrated this crypto library together with the ECC cipher suites defined in [6]
into MatrixSSL. Actually, we implemented two version of the crypto library: a
conventional version without countermeasures and a side-channel resistant ver-
sion where we eliminated all key-dependent branches and memory accesses from
the arithmetic operations. Our main goal was to keep the code size (i.e. the size
of the binary executable) and the memory footprint (i.e. the consumed run-time
memory) of the SSL implementation at an absolute minimum, even at the price
of an increase in execution time. The test platform on which we collected the
timings is an iPAQ PDA equipped with a 200 MHz StrongARM processor.



352 M. Koschuch et al.

Outline. The remainder of this paper is structured as follows: Section 2 gives
an overview of the SSL protocol with a special focus on the initial handshake
and describes where and how ECC can be incorporated into this handshake. Sec-
tion 3 elaborates on side-channel attacks and how they can be mounted against
elliptic curve cryptosystems. Section 4 then discusses our implementation and
the measures we took to reduce the side-channel leakage. In Section 5 we present
the results we achieved and give a detailed breakdown of the single phases of an
SSL handshake. Section 6 finally summarizes our results and findings.

2 Secure Sockets Layer Protocol

The Secure Sockets Layer (SSL) protocol and its successor, the Transport Layer
Security (TLS) protocol [11], are standardized protocol suites enabling secure
communication between a client and a server over an insecure network. The
main focus in the design of these protocols lay in modularity, extensibility, and
transparency. Applications that want to benefit from encrypted, authenticated
communication only have to use the read/write calls provided by the appropriate
API, and the protocol itself takes care of key exchange, message encryption and
decryption, authentication, and integrity.

SSL uses a combination of symmetric (i.e. secret-key) and asymmetric (i.e.
public-key) techniques, whereby the actual algorithms to be used are negotiated
by the communicating parties. After the parties have been authenticated and
keying material has been exchanged using public-key cryptography in the initial
handshake process, all messages are encrypted and their integrity is checked on
basis of symmetric algorithms.

The next subsection describes the handshake protocol in detail, followed by
two subsections which explain where and what type of ECC primitives can be
incorporated into this process.

2.1 SSL Handshake

Table 1 gives an overview of all messages that may be exchanged during the
handshake process, whereby time advances from top to bottom. A connection is
established by the client sending the ClientHello message, basically containing
a list with all the cipher suites supported by the client. This list consists of a
combination of identifiers for the different cryptographic algorithms used in the
handshake phase and for the data transfer thereafter. For example, the identifier
DHE-RSA-AES256-SHA means ephemeral Diffie-Hellman for key agreement, RSA
for authentication purposes, AES-256 as symmetric cipher when the connection
is established, and SHA-1 to compute the message authentication codes.

The server’s ServerHello message contains the identifier of the cipher suites
chosen for the connection (the handshake is aborted here if client and server do
not share a cipher suite). Usually, the server also sends its certificate and, if the
certificate does not contain enough information to establish a shared secret, also
a ServerKeyExchange message. The CertificateRequest message is rarely sent in
open environments, since it is assumed that very few clients are in possession



Workload Characterization of a Lightweight SSL Implementation Resistant 353

Table 1. SSL handshake, optional messages printed italic

Client Server

ClientHello
ServerHello
Certificate

ServerKeyExchange
CertificateRequest
ServerHelloDone

Certificate
ClientKeyExchange
CertificateVerify
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

of a valid certificate. In closed surroundings (e.g. a corporate network), this re-
quirement can obviously be strengthened such that mutual authentication can
be enforced. The client then checks the validity of the server’s certificate, sends
(if requested) its own certificate and, to proof that it is actually in possession
of the private key connected with this certificate, a CertificateVerify message
containing the signed concatenation of all messages exchanged until now. In the
ClientKeyExchange message it provides the server with all data necessary to
establish a shared pre-master secret; the actual content of this message depends
on the chosen cipher suite. The ChangeCipherSpec message is, strictly speaking,
not part of the handshake protocol anymore; it just signals both parties that all
messages from this moment on have to be encrypted using the symmetric cipher
initially agreed upon and the key derived from the shared pre-master secret. So
the Finished message is the first encrypted message, containing all the messages
exchanged during the handshake. If both parties can successfully decrypt this
message and verify its content, they can start to transfer application data.

Elliptic curve cryptography can be employed at two places in the handshake
process: for the signature generation/verification and for the establishment of a
pre-master secret [6,14]. When initiating an ECC-based handshake, not only the
cryptographic algorithms have to be agreed upon, but also the so-called domain
parameters, which specify (among other things) the elliptic curve E to be used,
the underlying finite field GF(q), and a base point P ∈ E that generates a large
subgroup of prime order n [4,5,16]. In ECC, a private key is simply a random
number k < n, and the corresponding public key is the point Q = k · P .

2.2 Elliptic Curve Diffie-Hellman (ECDH)

The elliptic curve equivalent of the “traditional” Diffie-Hellman key exchange
relies on the intractability of the (computational) Elliptic Curve Diffie-Hellman
Problem (ECDHP); that is, given an elliptic curve E over a finite field GF(q), a
base point P on curve E, and two points QA = kA ·P and QB = kB ·P , find the



354 M. Koschuch et al.

point S = kA · kB · P without knowledge of kA, kB. It is clear that the ECDHP
is no harder than the Elliptic Curve Discrete Logarithm Problem (ECDLP) as
solving the latter would solve the former as well. A detailed description of the
ECDH protocol and the hard mathematical problem its security is based upon
can be found in [5,16]. Similar to the conventional Diffie-Hellman protocol, the
ECDH protocol allows two entities to establish a shared secret over an insecure
communication channel. An attacker can intercept the two public keys QA and
QB, but knowledge of P , QA, QB does not enable him to calculate the shared
secret S, nor does it enable him to deduce the private keys kA and kB .

The ECC cipher suites defined in RFC 4492 allow for static and ephemeral
ECDH keys [6]. Cipher suites with static ECDH require the server’s certificate
to contain an ECDH-capable public key. This public key is nothing else than
a point on the elliptic curve, calculated by scalar multiplication of the server’s
secret key and the base point [5]. The server does not need to send a ServerKey-
Exchange message since the Certificate message already includes all the keying
information required by the client. Upon receipt of the Certificate message, the
client generates its own ECDH key pair consisting of a private key (i.e. a random
number) and a public key (i.e. the scalar product of the random number and the
base point), and sends the latter back to the server in the ClientKeyExchange
message. Now both the client and the server can calculate a shared secret by
scalar multiplication of their own private key and the public key obtained from
the other party. So, in summary, a total of two scalar multiplications are to be
performed by the client, and one scalar multiplication by the server.

2.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve
implementation of the Digital Signature Algorithm (DSA). Besides an elliptic
curve key pair, a secure hash function is needed for the generation/verification
of an ECDSA signature. Algorithm 4.29 in [16] shows the signature generation
process in detail. The main operation is a scalar multiplication k · P , which, in
turn, is performed through arithmetic operations in the underlying finite field
GF(q). Furthermore, a few arithmetic operations (including inversion) modulo
the order n of the base point P are to be carried out; these operations have, in
general, only little impact on the overall execution time.

RFC 4492 [6] specifies the use of ECDSA-based certificates in TLS 1.1 as an
alternative to RSA and DSA (resp. DSS) certificates. When using a cipher suite
with ephemeral ECDH, the server’s certificate must contain an ECDSA-capable
public key, and the server must sign the ephemeral ECDH key it embeds in the
ServerKeyExchange message with the private key corresponding to the public
key in the certificate. On the other hand, when using static ECDH, the server
does not need to sign the ECDH key since the signature is already contained in
the certificate. However, cipher suites with static ECDH have the disadvantage
that they do not provide forward secrecy (see [6] for further details).

Algorithm 4.30 in [16] describes the verification of an ECDSA signature that
has to be performed by the client during the SSL handshake in order to check



Workload Characterization of a Lightweight SSL Implementation Resistant 355

the server’s certificate. Two scalar multiplications and one point addition are
performed in step 5 of Algorithm 4.30, but they can be combined by using an
approach know as “Shamir’s trick” [16].

3 Side-Channel Attacks

In contrast to “ordinary” cryptanalytic attacks, Side Channel Attacks (SCAs) do
not attack the hard mathematical problem upon which the security of a system
is based, but rather its actual implementation [25]. Using secondary channels
like the time taken to perform a computation, power needed for a calculation,
or even electromagnetic radiation emitted by a device during operation, it is
often possible to deduce accurate information about the data being currently
processed. With some additional knowledge about the implementation, it may
even be possible to reveal the secret key or to extract information leading to the
discovery of the secret key. In the past, almost every cryptographic algorithm
has been successfully attacked using side channel cryptanalysis, whether it was
RSA (e.g. [20,34]), ECC (e.g. [13,29]), or AES (e.g. [30,3]). Depending on the
approach used, from a single up to several millions of measurements have to be
taken in order to extract the desired information.

Several successful side channel attacks against OpenSSL have been reported
in the literature [1,7,8]. In addition to that, stand-alone ECC implementations
have been successfully attacked exploiting information leaked from either the
group arithmetic (e.g. scalar multiplication) or the field arithmetic (e.g. final
subtractions in modular multiplication [33,35]).

3.1 SCA on ECC-Based SSL Handshake

In this paper we consider three types of side-channel attacks: Timing Analysis
(TA), Simple Power Analysis (SPA), and Differential Power Analysis (DPA). The
reader is referred to [25] for a detailed description of how these attacks can be
carried out in practice. We assume an attacker with physical access to both the
SSL/TLS server and the client, which enables him not only to collect accurate
timing information, but also allows him to measure the power traces needed to
conduct an SPA or DPA attack.

The ECDSA private-key operations executed on the server need appropriate
protection against SCA since knowledge of the server’s private key would allow
an attacker to impersonate the server, i.e. to create false servers with the same
identity. As already mentioned, ECC-based cipher suites with ephemeral ECDH
keys require the server to sign these keys using ECDSA. Fortunately, ECDSA
signature generation is “by design” not vulnerable to timing and DPA attacks
as the scalar multiplication is performed with a random number1. However, an
SPA attack on the scalar multiplication is possible, and, if successful, provides
the attacker with the random number, which eventually enables him to deduce
1 A DPA attack is theoretically possible on the modular multiplication carried out in

step 5 of Algorithm 4.29 in [16] since this operation involves the private key.



356 M. Koschuch et al.

the private key. Therefore, the scalar multiplication in the signature generation
operation requires countermeasures against SPA attacks. The ECDSA verifica-
tion is not susceptible to side-channel attacks.

When using ephemeral ECDH, the scalar multiplications on both the server
and the client are carried out with random numbers. Consequently, ephemeral
ECDH is not vulnerable to timing and DPA attacks, but an SPA attack can be
mounted (either on the client side or on the server side) to retrieve the random
value with which the scalar multiplication is performed. This would allow the
attacker to calculate the pre-master secret, which he can then use to decrypt the
communication between client and server. Therefore, ephemeral ECDH key ex-
change requires an SPA-resistant implementation of the scalar multiplication on
both the client and the server. The situation becomes more complicated if the
server uses a static ECDH key. A compromise of this key would be disastrous
because it enables an attacker to decrypt all SSL sessions conducted with static
ECDH, including past ones of which he captured the network traffic. Another
point to consider is that a TLS/SSL handshake with static ECDH is vulnerable
not only to SPA, but also to TA and DPA attacks. As mentioned in Subsection
2.2, the server’s final step of the key exchange is the scalar multiplication of its
own private key and the public key it received from the client in the ClientKey-
Exchange message. However, as this scalar multiplication is performed with the
same private key in every run of the protocol (and different, but known, public
keys), it must be implemented to withstand TA, SPA, and DPA attacks.

3.2 Protecting ECC against SCA

In the context of ECC, the goal of an SPA attack is, roughly speaking, to deduce
the sequence of group operations (i.e. point additions, point doublings) from a
power trace acquired during the execution of a scalar multiplication [16]. The
more point addition and point doubling differ in their power profile, the easier
it is to recover (bits of) the secret scalar. So, in order to foil SPA attacks, the
scalar multiplication should be implemented in such a way that always the same
operations are executed, independent of the operands. Proposed techniques to
achieve this range from the integration of dummy operations at the field and/or
group level (e.g. double-and-add-always method [10], Montgomery ladder [17])
over unified or indistinguishable formulae for point addition and doubling [9] to
algorithms for scalar multiplication with a fixed sequence of group operations
[26]. Yet another option is to use an alternative parameterization or curve rep-
resentation with more regularity in the scalar multiplication, e.g. Montgomery
form, Hessian form, Jacobi form [16]. Of course, all these approaches require an
SPA-resistant implementation of the field arithmetic as well. It was shown in
[33] and [35] that irregularities in the implementation of modular addition and
modular multiplication (e.g. conditional final subtractions) lead to differences in
execution time and power consumption, which can be exploited in TA and SPA
attacks. Therefore, the arithmetic algorithms should be implemented without
data-dependent conditional statements (e.g. if-then-else constructs) so that the
control flow becomes independent of the operands being processed.



Workload Characterization of a Lightweight SSL Implementation Resistant 357

To mount a DPA attack, an adversary must first collect a (sufficiently large)
set of power traces, each trace acquired as the device executes a scalar multipli-
cation with a different base point. Then, the adversary uses statistical analysis
techniques to find a correlation between an intermediate state predicted by guess-
ing bits of the secret scalar and the device’s instantaneous power consumption
[2]. The goal of DPA countermeasures is to break such correlation; in the context
of ECC this can be achieved through the randomization of both inputs of the
scalar multiplication: the base point P and the scalar k [5,10].

Applying the SPA countermeasures described before results in an implemen-
tation with constant execution time, which essentially prevents TA attacks. The
randomization of the secret scalar also helps to thwart timing attacks [2].

4 Implementation

As basis for our work we used the MatrixSSL library [31], an open-source imple-
mentation of the SSL/TLS protocol written in ANSI C. MatrixSSL is targeted
for use in resource-constrained embedded systems and provides both server and
client functionality. However, in its original form, MatrixSSL only supports the
traditional cipher suites based on DH, RSA, and DSA, but not the ECC cipher
suites specified in [6]. Therefore, we replaced the entire public-key part of the
library with our own implementation and integrated ECDH key exchange and
ECDSA signing/verification on arbitrary elliptic curves over prime and binary
extension fields. Our focus was on a small and memory-saving implementation;
thus, we abstained from using optimized reduction techniques for standardized
primes (such as the NIST primes [28]) and irreducible polynomials. Instead, we
realized the field arithmetic with “generic” algorithms for modular reduction, in
particular Montgomery’s algorithm [27]. To assess the impact of SCA counter-
measures on performance and memory requirements, we implemented both a
straightforward (i.e. unsecured) version of the public-key library and a version
with all data-dependent branches and memory accesses removed from the field
and group arithmetic.

Table 2 shows a rough comparison between the size of our library (with and
without SCA countermeasures), the original MatrixSSL implementation, and the
OpenSSL library we used for reference purposes. The memory footprint is given
for a single SSL connection using an elliptic curve over a 192-bit prime field in
all cases except for the original MatrixSSL stack, where 1024-bit RSA was used

Table 2. Comparison of code size and memory footprint of SSL libraries

Number of Lines of Size of MemoryImplementation
source files code executable footprint

Orig. MatrixSSL 30 ∼ 9,500 114 kB 15.18 kB
Our SSL w/o CM 50 ∼ 10,800 140 kB 9.57 kB
Our SSL with CM 50 ∼ 10,900 141 kB 9.64 kB
OpenSSL 0.9.8 1,100 ∼ 250,000 2,400 kB 182.34 kB



358 M. Koschuch et al.

due to the lack of ECC support. A quick look at the number of source code files
and the lines of code reflects the different design philosophies of MatrixSSL and
OpenSSL. The latter is a full-featured SSL/TLS implementation with a number
of performance enhancements, including special modular reduction algorithms
for standardized fields [28], hand-written assembly code for performance-critical
tasks, and code-size increasing optimizations like loop unrolling. MatrixSSL, on
the other hand, is optimized for use in embedded systems and comprises only a
fraction of the code size and memory requirements of OpenSSL. The integration
of our public-key crypto library with ECC support increases the code size by 26
kB in relation to the original MatrixSSL version. However, using ECC instead
of RSA/DH reduces the memory footprint by roughly one third from 15 kB to
less than 10 kB.

The results in Table 2 show that our approach of making the SSL handshake
side-channel resistant (which will be described in detail in Subsection 4.2) entails
only a minimal increase in memory footprint and has almost no impact on the
code size. In addition to that, our protected implementation has just 6% of the
size of OpenSSL2. The memory footprint of our protected SSL implementation
is by a factor of 18 smaller than that of OpenSSL.

4.1 Straightforward ECC Implementation

The unprotected version of our crypto library is realized in a fairly straightfor-
ward way. We used Algorithm 2.9 in [16] to implement the multiple-precision
multiplication and Montgomery’s well-known algorithm for modular reduction
[27]. In order to keep the code size of our library at a minimum, we did not include
optimized reduction functions for special primes like the NIST primes. Also the
curve arithmetic over GF(p) is based on well-known algorithms. We represent
the elliptic curve points using the mixed Jacobian-affine coordinates described
in [16, Sect. 3.2.2]. The scalar multiplication over GF(p) is performed according
to the double-and-add technique with non-adjacent-form (NAF) representation
of the scalar to save some point additions. For ECDSA verification, Shamir’s
trick [16] in combination with a joint-sparse-from (JSF) representation of the
scalars is used to interleave the two scalar multiplications [32]. We decided to
not implement a window method for scalar multiplication because we aimed to
keep the memory footprint at a minimum.

Also the algorithms for arithmetic in GF(2m) are well documented and fairly
straightforward to implement. We used the so-called left-to-right comb method
with windows of width 4 for the multiplication of binary polynomials [24]. Fur-
thermore, we implemented a generic reduction function for irreducible trinomials
and pentanomials. The term generic in this context means that the reduction
function accepts arbitrary trinomials and pentanomials as input. In addition, we
also included the Montgomery reduction for binary polynomials in our library
to support irreducible polynomials which are not trinomials or pentanomials

2 Although there have been attempts of stripping OpenSSL down, the resulting library
was still about 580 kB in size (see [22] for details).



Workload Characterization of a Lightweight SSL Implementation Resistant 359

[19]. The scalar multiplication over GF(2m) is performed according to the well-
known algorithm of Lopez and Dahab [23].

4.2 SCA-Resistant ECC Implementation

In order to protect the arithmetic in GF(p), all conditional operations such as
conditional subtractions of the prime p have to be replaced by unconditional
subtractions where the subtrahend is either p or 0. Conditional operations do
not only occur in the field addition and field subtraction operations, but also in
the Montgomery multiplication and the Montgomery squaring. In order to get
unconditional code, we extended the array holding the prime p with a second
array holding only zeros (this happens exactly once, so the additional storage
overhead of this zero-array can be neglected). Then, all conditional branches
are replaced by index calculations into this extended array to either subtract
the actual prime p, or only zero. This removes any runtime dependency on the
data being processed and allows one to realize field arithmetic operations with
constant execution time, regardless of the operands being processed3.

Another problem one has to deal with in the field addition is the comparison
of the sum with the prime p. An exact comparison is a costly operation and
should be avoided. Instead, we just check whether the addition produced a carry
(which means that the bitlength of the sum exceeds the bitlength of p) and we
use this carry to calculate the index into the extended array from which the
subtrahend for the unconditional subtraction is loaded. If the addition produced
a carry4, then the subtrahend is p, otherwise it is 0. Note that a “secure” field
addition actually requires to perform two unconditional subtractions, and even
after these two subtractions the result may not be fully reduced. Fortunately, the
Montgomery multiplication can be adapted to cope with incompletely reduced
operands (see [36] for more details). For the secure implementation of the scalar
multiplication over GF(p), we used the the Montgomery ladder [17, Algorithm 1]
as it is very modest in terms of code size and memory requirements.

The arithmetic in GF(2m) is easy to protect against SPA attacks. In fact, the
only function that needed a “tweak” was the reduction modulo the irreducible
polynomial. Also here we tolerate incompletely reduced intermediate results to
get rid of data-dependent branches [15].

In order to thwart DPA attacks, we randomize the scalar and also apply the
point randomization technique described in [16]. Since the scalar multiplication
over GF(p) is carried out in projective Jacobian coordinates, but the points are

3 Note that the approach of unconditional subtraction of either p or 0 protects against
timing attacks, but may be vulnerable to an SPA attack. For example, when the
subtrahend is the zero-array, the register into which the words of the subtrahend are
loaded does not change its content, and hence it may consume less power than when
the subtrahend is the prime p. A simple solution to this problem is to (partially)
unroll the loop of the subtraction function and interchange the registers into which
the individual words of the minuend and subtrahend are loaded.

4 For sake of simplicity, we assume that the bitlength is a multiple of the processor’s
word size, which is always the case with the NIST primes on a 32-bit processor.



360 M. Koschuch et al.

transmitted in affine coordinates to save bandwidth, it is possible to compute
the scalar multiplication with any point represented by (λ2x, λ3y, λ) with (x, y)
being the original (i.e. affine) point. The overhead for this operation in an entire
scalar multiplication is negligible. A similar blinding technique can be used to
make the scalar multiplication over GF(2m) DPA-resistant.

5 Experimental Results

All results reported in this paper were obtained by executing the SSL software
on a Compaq iPAQ h3600 with a StrongARM SA-1100 clocked at 200 MHz and
running Familiar Linux v0.8.2. The iPAQ was connected to a PC using the USB
port of its cradle and initiated SSL sessions with the server running there. The
timings were collected using the gettimeofday method due the to the lack of a
dedicated cycle counter. We measured the execution time of a sufficiently large
number of iterations to ensure the accuracy of the results.

Table 3. Execution time (in msec) of a scalar multiplication

Implementation GF(p192) GF(p224) GF(p256) GF(2163) GF(2191) GF(2233)
Our SSL w/o CM 23.4 33.4 47.3 38.5 44.1 94.2
Our SSL with CM 50.0 72.7 102.5 38.5 44.1 94.2
OpenSSL 0.9.8 36.5 48.4 54.3 31.3 33.7 64.7

Table 3 summarizes the timings for a scalar multiplication on standardized
elliptic curves over 192, 224, and 256-bit prime fields, as well as 163, 191, and
233-bit binary fields. Our unsecured implementation outperforms OpenSSL on
elliptic curves over prime fields, which is a remarkable result when considering
that OpenSSL contains many performance-increasing optimizations (e.g. special
modular reduction techniques for standardized primes, hand-written assembly
code for frequently executed operations, advanced window methods for scalar
multiplication), while our implementation uses the Montgomery algorithm for
modular reduction, the double-and-add method for scalar multiplication, and is
written entirely in ANSI C. The side-channel countermeasures roughly double
the execution time, mainly due to the use of the Montgomery ladder5. In the
GF(2m) case, there are no differences between the secured and the unsecured
implementation because the Lopez-Dahab method for scalar multiplication does
not necessitate special SPA countermeasures, and the countermeasures against
DPA have virtually no impact on the overall execution time.

Table 4 shows the timings for an ECDSA signature verification. The benefit
of Shamir’s trick for multiple point multiplication over prime fields is obvious
since a naive implementation of a computation of the form k · P + l · Q would

5 The Montgomery ladder not only increases the number of point additions, but also
requires a more costly implementation of the point addition with the ability to add
two points given in projective coordinates.



Workload Characterization of a Lightweight SSL Implementation Resistant 361

Table 4. Execution time (in msec) of ECDSA signature verification

Implementation GF(p192) GF(p224) GF(p256) GF(2163) GF(2191) GF(2233)
Our SSL w/o CM 30.1 44.0 61.3 78.1 91.8 189.9
Our SSL with CM 33.0 49.1 67.9 78.1 91.8 189.9
OpenSSL 0.9.8 38.4 48.6 66.3 66.3 72.5 133.7

take more than twice the time of an ordinary scalar multiplication. Even though
ECDSA verification does not leak any confidential information, we realized it on
basis of the SPA-resistant implementation of the GF(p)-arithmetic to reduce the
overall code size. The results in Table 4 also indicate that eliminating all data-
dependent branches and memory accesses from the field arithmetic increases the
execution time by a mere 10%. When using a binary field as underlying algebraic
structure, the ECDSA verification is significantly slower than an ordinary scalar
multiplication because Shamir’s trick can not be used in combination with the
Lopez-Dahab method.

Finally, Table 5 shows the timings for an entire SSL handshake from the first
ClientHello message to the Finished message. These timings were measured on
the iPAQ PDA, which acts as SSL client initiating a handshake using a cipher
suite with static ECDH. Hence, the timings mainly contain the execution time
of the ECDH key exchange (i.e. two scalar multiplications on the client) and the
signature verification. The remaining time is spent for protocol processing and
for administrative purposes. We eliminated deviations due to unsteady network
conditions by using a direct connection between the iPAQ and the PC on which
the SSL server is running. In summary, the implemented countermeasures for
protecting ECC over GF(p) increase the latency of the entire SSL handshake
by roughly 50% compared to an unprotected implementation, but still allow for
more than acceptable performance (on the 200 MHz PDA, an entire handshake
based on 192-bit ECC can be completed in less than 160 msec).

Figure 1 depicts a breakdown of an entire SSL handshake using ECC over a
192-bit prime field. The ECDH key exchange and the ECDSA signature verifi-
cation constitute the main portion of the handshake on the client side, taking
a total of roughly 90% of the entire handshake time. This justifies attempts for
speeding up public-key operations for the transmission of small messages. The
larger the transmitted messages become, the lower the fraction of the handshake
time and, as a direct consequence, the lower the impact of public-key operations
gets in relation to the secret-key operations (i.e. bulk encryption).

Table 5. Execution time (in msec) of an entire SSL handshake

Implementation GF(p192) GF(p224) GF(p256) GF(2163) GF(2191) GF(2233)
Our SSL w/o CM 95.0 128.0 175.0 177.0 195.5 408.5
Our SSL with CM 154.0 220.8 307.5 177.0 195.5 408.5
OpenSSL 0.9.8 106.0 136.0 186.0 110.0 160.0 287.0



362 M. Koschuch et al.

0

20

40

60

80

100

120

140

160

180

Our SSL w/o CM Our SSL with CM OpenSSL

E
xe

cu
tio

n 
T

im
e 

in
 m

se
c

Rest

ECDH

ECDSA

Fig. 1. Breakdown of the handshake using ECC over a 192-bit prime field

0

25

50

75

100

125

150

175

200

225

Our SSL w/o CM Our SSL with CM OpenSSL

E
xe

cu
tio

n 
T

im
e 

in
 m

se
c

Rest

ECDH

ECDSA

Fig. 2. Breakdown of the handshake using ECC over a 191-bit binary field

Figure 2 shows the same breakdown as Figure 1, but for ECC over a 191-bit
binary field. There are mainly two things that can be observed: First, there is
almost no difference in running time between the secured and unsecured imple-
mentation (due to the features of the Lopez-Dahab method) and second, because
Shamir’s trick can not be used together with the Lopez-Dahab method, the time
for an ECDSA signature verification is now almost the same as the time for an
ECDH protocol run, both mainly dominated by two scalar multiplications. The
fraction of the protocol-related overhead remains the same as for the handshake
using ECC with SCA-resistant prime field arithmetic, namely about 10%.

6 Conclusions

In this paper we analyzed the workload characteristics of a lightweight SSL im-
plementation into which we integrated a generic ECC library with support for
arbitrary prime and binary extensions fields. Our focus was on small code size



Workload Characterization of a Lightweight SSL Implementation Resistant 363

and low memory footprint rather than on pure performance. In order to assess
the impact of SCA countermeasures, we implemented two versions of the library:
a straightforward one that does not consider side-channel leakage, and a secure
one featuring countermeasures against TA, SPA, and DPA attacks. Our results
show that the execution time of a scalar multiplication over GF(p) increases by
a factor of two when using the Montgomery ladder instead of the conventional
double-and-add method with NAF representation of the scalar. However, the
overall latency of the SSL handshake increases by about 50% compared to the
unsecured implementation, but is still perfectly acceptable for many embedded
applications. In summary, our lightweight SSL implementation is a little slower
than OpenSSL, but has only a fraction of its code size (141 kB instead of 2400
kB) and memory footprint (9.64 kB instead of 182 kB). On the other hand, the
situation is quite different for binary extensions fields. A straightforward im-
plementation using the Lopez-Dahab method for scalar multiplication provides
good protection against timing and SPA attacks, and therefore the performance
penalty due to the integration of SCA countermeasures is very small. Putting it
all together, our work demonstrates that an SSL implementation can be made
side-channel resistant without sacrificing memory footprint and code size. The
penalty is a moderate performance degradation for ECC over GF(p), while the
performance of ECC over GF(2m) is almost unaffected.

Acknowledgements

The work described in this paper has been supported by the EPSRC under
grant EP/E001556/1 and, in part, by the European Commission through the
IST Programme under contract IST-2002-507932 ECRYPT. The information in
this document reflects only the authors’ views, is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

References

1. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and Boneh timing
attack on unprotected SSL implementations. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS 2005), pp. 139–146.
ACM Press, New York (2005)

2. Avanzi, R.M.: Side channel attacks on implementations of curve-based crypto-
graphic primitives. Cryptology ePrint Archive, Report 2005/017 (2005),
http://eprint.iacr.org

3. Bernstein, D.J.: Cache-timing attacks on AES (preprint, 2005),
http://cr.yp.to/mac.html#cachetiming

4. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

5. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

http://eprint.iacr.org
http://cr.yp.to/mac.html#cachetiming


364 M. Koschuch et al.

6. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Möller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). Internet
Engineering Task Force, Network Working Group, RFC 4492 (2006)

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
12th USENIX Security Symposium (SECURITY 2003), pp. 1–14. USENIX (2003)

8. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
an SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

9. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity. IEEE Transactions on Comput-
ers 53(6), 760–768 (2004)

10. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

11. Dierks, T., Rescorla, E.K.: The Transport Layer Security (TLS) Protocol Version
1.1. Internet Engineering Task Force, Network Working Group, RFC 4346 (2006)

12. Freier, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol Version 3.0. Internet
Draft (1996), http://wp.netscape.com/eng/ssl3/draft302.txt

13. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

14. Gupta, V., Gupta, S., Chang Shantz, S., Stebila, D.: Performance analysis of elliptic
curve cryptography for SSL. In: Proceedings of the 3rd ACM Workshop on Wireless
Security (WiSe 2002), pp. 87–94. ACM Press, New York (2002)

15. Gura, N., Eberle, H., Chang Shantz, S.: Generic implementations of elliptic curve
cryptography using partial reduction. In: Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS 2002), pp. 108–116. ACM Press,
New York (2002)

16. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer, Heidelberg (2004)

17. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007)

18. Kaufman, C., Perlman, R., Speciner, M.: Network Security: Private Communica-
tion in a Public World. Prentice Hall, Englewood Cliffs (2002)

19. Koç, Ç.K., Acar, T.: Montgomery multiplication in GF(2k). Designs, Codes and
Cryptography 14(1), 57–69 (1998)

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

22. Lenzlinger, B., Zingg, A.: Mini Web Server supporting SSL. M.Sc. Thesis, Zurich
University of Applied Sciences Winterthur (2000)

23. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

24. López, J., Dahab, R.: High-speed software multiplication in IF2m . In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

http://wp.netscape.com/eng/ssl3/draft302.txt


Workload Characterization of a Lightweight SSL Implementation Resistant 365

25. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

26. Möller, B.: Securing elliptic curve point multiplication against side-channel at-
tacks. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334.
Springer, Heidelberg (2001)

27. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

28. National Institute of Standards and Technology (NIST). Recommend Elliptic
Curves for Federal Government use. Technical report (1999),
http://csrc.nist.gov/CryptoToolkit

29. Okeya, K., Sakurai, K.: A second-order DPA attack breaks a window-method based
countermeasure against side channel attacks. In: Chan, A.H., Gligor, V.D. (eds.)
ISC 2002. LNCS, vol. 2433, pp. 389–401. Springer, Heidelberg (2002)

30. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

31. PeerSec Networks, Inc. MatrixSSL 1.7.1 (September 2005),
http://www.matrixssl.org

32. Solinas, J.A.: Low-Weight Binary Representations for Pairs of Integers. Technical
report CORR 2001-41, University of Waterloo, Waterloo, Canada (2001)

33. Stebila, D., Thériault, N.: Unified point addition formulæ and side-channel attacks.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 354–368.
Springer, Heidelberg (2006)

34. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

35. Walter, C.D.: Simple power analysis of unified code for ECC double and add.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204.
Springer, Heidelberg (2004)

36. Yanık, T., Savaş, E., Koç, Ç.K.: Incomplete reduction in modular arithmetic. IEE
Proceedings – Computers and Digital Techniques 149(2), 46–52 (2002)

37. Zhao, L., Iyer, R., Makineni, S., Bhuyan, L.: Anatomy and performance of SSL
processing. In: Proceedings of the 5th International Symposium on Performance
Analysis of Systems and Software (ISPASS 2005), pp. 197–206. IEEE Computer
Society Press, Los Alamitos (2005)

http://csrc.nist.gov/CryptoToolkit
http://www.matrixssl.org


Authenticated Directed Diffusion

Eric K. Wang, Lucas C.K. Hui, and S.M. Yiu

The University of Hong Kong, Pokfulam, Hong Kong

Abstract. Directed Diffusion(DD) is a method of data dissemination
especially suitable in distributed sensing scenarios. It has been known
well in the application of wireless sensor network routing. Although it is
very popular as a data-centric routing protocol for wireless sensor net-
work(WSN), it faces several types of serious attacks. We proposes a new
protocol (”Authenticated Directed Diffusion” (ADD)) which extends the
directed diffusion protocol. According to the resource constraint of WSN,
we adopt a real time one-way key chain and authenticated blacklist dif-
fusion to achieve the authenticity and integrity in the routing process
for directed diffusion with relative low overhead. Authenticated Directed
Diffusion mainly tackle three problems(DoS attack,sinkhole attack and
bogus routing attack) which Directed Diffusion can not handle. The sim-
ulation result shows that the performance of Authenticated Directed Dif-
fusion is acceptable.

Keywords: Directed Diffusion, Authentication, Wireless Sensor
Networks.

1 Introduction

Directed Diffusion(DD)[4] is a data-centric routing protocol in that all commu-
nication is for named data. It provide a mechanism for a limited flood of a query
toward an event, and then set up reverse gradients to send data back along the
best route.

Directed diffusion consists of several elements: interests, data messages, gra-
dients, and reinforcements. An interest message is a query or an interrogation
which specifies what a user wants. Each interest contains a description of a sens-
ing task that is supported by a sensor network for acquiring data. Typically, data
in sensor networks is the collected or processed information of a physical phe-
nomenon. Such data can be an event which is a short description of the sensed
phenomenon. In directed diffusion, data is named using attribute-value pairs.
A sensing task is disseminated throughout the sensor network as an interest for
named data. This dissemination sets up gradients within the network designed to
”draw” events (i.e.,data matching the interest). Specifically, a gradient is direc-
tion state created in each node that receives an interest. The gradient direction
is set toward the neighboring node from which the interest is received. Events
start flowing towards the originators of interests along multiple gradient paths.
The sensor network reinforces one, or a small number of these paths.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 366–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Authenticated Directed Diffusion 367

Here we give a brief introduction of the DD protocol phases. For more details,
please refer to [4].

This protocol includes four phases.

1. interest propagation phase
2. routing setup phase
3. reinforcement phase
4. data propagation phase

1.1 Interest Propagation Phase

The first step is interest propagation phase. the sink broadcasts an interest
message periodically to all the neighbors. Every node maintains an interest
cache. At receiving an interest, a node checks whether the interest is already
in it’s cache. If there is no such an interest entry inside it’s cache, the node
generate an interest entry and related fields such as gradient field. The entry
has a single gradient towards the neighbor from which the interest was re-
ceived. The gradient specifies both a data rate and a direction in which to send
events.

1.2 Routing Setup Phase

The second step is low-rate data propagation and routing setup phase. The
source node identify whether it has the same interest cache matched. If it is,
the node sends low-rate data to those who has a gradient. Nodes receive a data
message from their neighbors try to confirm whether there is a matching interest
entry in their cache. If the answer is yes, the nodes cache the received message
and forward it to their neighbors.

1.3 Reinforcement Phase

Next, it is the reinforcement phase. When the above low-rate data reaches the
sink along multiple paths, the sink then selects and reinforces one particular
path in order to draw down higher quality events. To reinforce the path, the
sink re-sends the original interest message with a smaller interval.

1.4 Data Propagation Phase

The last phase is the data propagation phase. The source node computes the
highest requested event rate among all its outgoing gradients and sends them to
its neighbors. The message receiver checks the matching interest entry’s gradient
list. If there is a lower data rate than the received data rate, it may down convert
the data to the appropriate gradient. And it also does some in-network data
aggregation before re-sending the message in order to make the data aggregation
more efficient. Finally, data is propagated along the path.



368 E.K. Wang, L.C.K. Hui, and S.M. Yiu

2 Security Concern of Directed Diffusion

Although DD has several nice features such as (1)data-centric dissemination,
(2)reinforcement based adaptation to the best path and (3)in-network aggrega-
tion and caching, it has not been designed for security purpose. It is threatened
by multiple attack models (bogus routing information, selective forwarding, sink
holes, sybil wormholes and Dos attacks). Our contribution is mainly to tackle
three of them, DOS attacks, sink hole attacks and bogus routing information.

2.1 DoS Attack

Due to the sensors’ inherent limitations, directed-diffusion based wireless sensor
network is easily attacked by DoS attack [8]. An effective form of DoS attack
against directed diffusion is to overwhelm nodes that are many hops away by
flooding interests packets, which will quickly exhaust the limited energy, com-
munication bandwidth, memory, and CPU of resource-limited sensor nodes. An-
other effective form of DoS attack against directed diffusion is to flood data
packets, which also exhaust the resources of nodes.

2.2 Bogus Routing Information

Another kind of attacks against DD is to target the gradient information between
nodes. By spoofing, altering, or replaying gradient information, adversaries may
be able to create routing loops, attract network traffic, extend or shorten source
routes, generate false error messages, partition the network, increase end-to-end
latency, etc.

2.3 Sinkholes Attack

In a sinkhole attack for DD, the adversary’s goal is to lure nearly all the traffic
from a particular area through a compromised node, creating a metaphorical
sinkhole with the adversary at the center. Because nodes on, or near, the path
that packets follow have many opportunities to tamper with application data,
sinkhole attacks can enable many other attacks (selective forwarding, for ex-
ample). Sinkhole attacks typically work by making a compromised node look
especially attractive to surrounding nodes.

2.4 Other Attacks

Besides the above three attacks, there are still some other attacks such as selec-
tive forwarding, sybil attacks and wormholes attacks [2]. In a selective forwarding
attack, malicious nodes may refuse to forward certain messages such as Inter-
ests messages from base station and simply drop them, ensuring that they are
not propagated any further. Sybil attacks is that single node presents multiple
identities to other nodes and significantly affect fault-tolerance schemes like dis-
tributed storage, multi-path routing, topology maintenance. Wormhole attack is
that an adversary tunnels messages received in one part of the network over a
low-latency link and replays them in a different part. The simplest instance of
this attack is a single node situated between two other nodes forwarding mes-
sages between the two of them.



Authenticated Directed Diffusion 369

3 Related Works

Perrig et al. (2002) proposed Security Protocols for Sensor Networks, SPINS, a
suite of security protocols optimised for sensor networks [1]. It consists of two se-
cure building blocks SNEP and µTESLA, which runs on top of TinyOS, a small,
event driven operating system for sensor node. Secure Network Encryption Pro-
tocol, SNEP, is used to provide confidentiality through encryption and authen-
tication, in addition to integrity, using a message authentication code (MAC).
It adds 8 bytes per message and maintains a counter at both end points. It can
prevent eavesdroppers from inferring the message content from the encrypted
message and provides data authentication. However, for each data transmission,
each node needs to calculate and store four keys, which is very costly. Also each
communication pair shares a master key. Thus, SNEP is not good for sensor to
sensor communications.
µTESLA protocol uses an one way hash chain number as the key to generate a

message authentication code (MAC) of a broadcast message. A different one way
hash number is allocated for each time slot, and this number is used to generate
MACs for the packets sent in that time slot. To tolerate packet losses, it has been
extended by introducing multi-level one-way hash chain. A higher-level one way
hash number is used to bootstrap low-level one-way hash numbers. But they both
have some limitations. µTESLA requires that the base station and the nodes be
loosely time synchronized while time synchronization is costly and vulnerable to
attacks. And the node who receives a packet can not authenticated it immedi-
ately, Usually it needs the latency to finish authentication of packets. Moreover,
adversary can forge the packet during the key disclosure interval among different
sensor nodes to cheat those nodes which has not received the disclosed key because
of packet delay. Actually, µTESLA protocol is mainly designed for broadcasting
for the scenario that one sender faces multiple receivers. It is able to provide se-
curity for base station broadcasting at some degree. But it is not feasible to apply
µTESLA protocol to route through the whole sensor network.

Wang et al.(2005) [3] is the only one previous work for secure directed diffu-
sion, it employs the TESLA to do the authentication and symmetric encryption
to protect the nonce in the message packets in order to prevent replay attacks.
Unfortunately, it does not support the in-network aggregation process. And it
needs loosely time synchronization and extra communication overhead to convey
the keys and . It costs too much and is vulnerable to attacks.

4 Authenticated Directed Diffusion Protocol

Our protocol include two parts, one is real-time one way hash chain authentica-
tion, the other is the authenticated blacklist diffusion with the interests diffusion.

A one-way hash chain is employed as an efficient and simple solution on
resource-constrained sensor nodes for mitigating DoS and replay attacks along
paths. A one-way hash chain[5] is a sequence of numbers generated by a one-
way function F, that has the property that for a given x it is easy to compute



370 E.K. Wang, L.C.K. Hui, and S.M. Yiu

y = F(x). However, given F and y, it is computationally infeasible to determine
x, such that x = F−1(y). A one-way hash key chain is a sequence of numbers si,
si−1,. . ., s0, such that : 0 < i < n and si = F(si+1). To generate a key, we first
select a random number st as the seed, and successively apply function F on st
to generate other numbers in the sequence.

The protocol includes a pre-load setup and the same phases as DD.

1. pre-load setup
2. interest propagation phase
3. routing setup phase
4. reinforcement phase
5. data propagation phase

4.1 Pre-load Setup

Base station randomly chooses a seed (kt), and it generates a key chain until
k0 by F(kt) , F(kt−1), F(kt−2), F(k1), where k0= F(k1). Then each node in the
network is pre-loaded by an initial verifier v0= k0. We can refer to figure 1.
Moreover, each node also maintains its own one way hash key chain. Suppose
a node Ni, it maintains HNi0, HNi1,.. HNimwhere HNim−1=F(HNim). Node i
shares a symmetric key Sni with base station.

4.2 Step1- Interest Propagation

Since the interest should be cached by all the sensor nodes, it should not be al-
lowed to be modified during diffusion. When the sink sends out the first interest,
it floods a packet in the form of {INTEREST1|Blacklist1|MACk1(INTEREST1|
Blacklist1)|k1}. When a node Ni in the network receives the packet, it ver-
ifies if F(k1)= v0, if so, then it verifies if MACk1(INTEREST1|Blacklist1)=
MAC’k1(INTEREST1|Blacklist1). At the same time, it checks if the source who
sent out the packet is not in the blacklist. If so, the packet is validated and be
forwarded to next node until the interest is flooded to the whole network. Then
v0 is updated and set to be k1. Moreover, in order to tolerate packet latency or
loss, we adopt (� times verification test) to check if Fki= v0. If the packet is
not validated after the verification process has been performed � times or the

Fig. 1. One-way key chain



Authenticated Directed Diffusion 371

source node sent out the packet is in the blacklist, Ni simply drops the packet.
The default value of � is 3.

The pseudocode of the step is as follows:
For any node who receives interest:
If (sender is in the blacklist) then {discard the message };
Else

If (F(ki)=v0) and
(MACk1(INTEREST 1|Blacklist1) =MAC′

k1(INTEREST 1|Blacklist1)),
then { check the cache to store the interest and broadcast it to next hops;
v0=ki; };
Else {discard the message}

4.3 Gradients Establishment

Each node M maintains a unique one-way hash chain HM:<HMi,HMi−1,....
HM1,HM0>. When M sends data to the base station, it includes an value number
from HM in the packet:

The pseudocode of the step is as follows:
For any node who receives interest:
If (sender is in the blacklist) then {discard the message };
Else

If (DATA.type=initial.type) , then {broadcast it to next hops; };
Else {discard the message}

Here we give one scenario example as figure 2 . Suppose node Nf is the right
source node which matches the INTEREST task.

Path Routing Data
1 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf}}
2 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf}}
3 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf}}
4 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd}}
5 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDne }}
6 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd}}
7 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDne}}
8 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd , IDna}}
9 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnc}}
10 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnc}}
11 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd , IDna}}
12 {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDne , IDnb}}

Where {IDnf} is the node list of the path. DATA1 is the data that node F
collects by the description of the INTEREST1.

For node D :

– Receive the packet from node F
– Send {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd }} to node A

and node C.



372 E.K. Wang, L.C.K. Hui, and S.M. Yiu

Fig. 2. Gradient Step2

For node F :

– Randomly generates a nonce(nonce1 )
– broadcast {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf}}
– Send {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf}} to D,C and E

For node C :

– Receive the packet from node F
– Send {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnc }}to Node B

and sink.

For node E :

– Receive the packet from node F
– Send {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDne }}to node B

and C.

For node A:

– Receive the packet from node D
– Send {DATA1|MAC HMi1 (DATA1)|[HMi0]Snf |{IDnf, IDnd , IDna }} to

node C and sink.

For node B :

– Receive the packet from node E
– Send {DATA1|MAC HMi1 (DATA1)|HMi1|[HMi0]Snf |{IDnf, IDne , IDnb
}} to sink.



Authenticated Directed Diffusion 373

For the sink

– Receive three packets from different neighbours node A,B,C
– Receive {DATA1|MAC HMi1 (DATA1)|HMi1|[HMi0]Snf |{IDnf, IDnd,

IDna }} from node A
– Receive {DATA1|MAC HMi1 (DATA1)|[Ni0]Snf |{IDnf, IDne, IDnb }} from

node B
– Receive {DATA1|MAC HMi1 (DATA1)|HMi1|[HMi0]Snf |{IDnf, IDnc }}

from node C
– Check if node F is in the blacklist, if not
– decrypt [HMi0]Snf by the share key Snf and gets the first key of Node F’s

one-way chain HMi0
– Check if HMi1 is the right derived key from node F.
– Checks if the DATA1 is from node F and has not been modified.
– Check if nonce1 could be decrypted by using the intermediate nodes’ shared

key in turn.
– If all of the three packets in the above pass the verification, the sink now has

three paths {F, E, B},{F, D, A} and {F, C}.

4.4 Path Reinforcement

After sink receives data from different neighbors, it should choose one path to
reinforce it. Usually,the sink chooses a path based on lower delay or shorter
hop. But because wormhole attacker or a laptop-class attacker can be easy to
supply a higher quality route than normal nodes, in order to defend malicious at-
tacks, the sink could choose a path probabilistically. And the detailed probability
distribution depends on the different designer. One of the simplest probability
distributions can be set to be a random distribution.

We suppose that the sink chooses path {F, C} ,path{3,4} to reinforce. In
order to propagate a reinforcement the sink firstly sends a packet in the form of
{REINFORCEMENT1|{F,C}|Blacklist2| {IDnf, HMi0}}MAC k2 {REINFORC-
EMENT1|{F,C}| Blacklist2|{IDnf, HMi0}}|k2 }. The node, which receives the
packet, checks if the packet is from the sink by verifying if k2 is validate and
if REINFORCEMENT1, Blacklist2 or {IDnf , HMi0} has been modified in the
diffusion. If either check fails, the node discards the two packets. Otherwise the
node checks if it is an intermediate node on the path. If the node is on the path
that is being reinforced, it records the reinforcement information in its cache.
And it sets its own verifier of Node F as HMi0. Otherwise it does nothing. We
can refer to figure 3.

4.5 Data Routing Back

After the reinforcement, node F sends out {DATA2|MAC HMi2(DATA2 |{Dnf}}
to on the established path by the appropriate gradient.

A node that receives the above packet from its neighbor firstly checks if the
DATA2 are from node F and have not been modified in the diffusion. Then the
node attempts to find a matching interest entry and corresponding appropriate
gradients in its cache. At last the node re-sends the packet to the appropriate
neighbors.



374 E.K. Wang, L.C.K. Hui, and S.M. Yiu

Fig. 3. Reinforcment

5 Security Analysis

The protocol can effectively guarantee the integrity of Data transferred in the
network. Once the data is modified, the receiver can detect it.

And it can effectively defend bogus routing attack and sinkhole attack by
data authentication and blacklist. We adopt intrusion detection method [10] to
generate blacklist which is able to show the nodes who are malicious around
them. Broadcasting blacklist has two ways, one is that blacklist can be broad-
casted periodically by sink, one is to broadcast blacklist with interests data sent
out by sink. According to the protocol situation, we adopt the latter one, thus
the protocol ”Authenticated Directed Diffusion” has the same communication
rounds with the original Directed Diffusion protocol.

Attack GR CB RR DD ADD
Bogus Routing � × � � ×

DoS × � � ×
Sinkholes × × � � ×

GR:Geographic Routing
CB:Cluster Based
RR: Rumor Routing
DD: Directed Diffusion
ADD: Authenticated Directed Diffusion

Because we adopt blacklist broadcasting, each node who receives the blacklist
can judge whether the nodes around it is in the blacklist. According to the timely
blacklist, nodes can effectively detect malicious nodes, who are able to be against
sinkholes attacks and bogus routing attacks.



Authenticated Directed Diffusion 375

5.1 Remain Security Issue

One possible attack on ADD is that a malicious node can listen to and block all
packets sent from the source node, and in addition, collect all the keys included
in these packets. These accumulated keys can be used to generate a flash flood
against subsequent intermediate nodes by sending a burst of spurious packets in
a very short period of time. Since the subsequent intermediate nodes have not
seen these keys, they will validate the corresponding packets and forward them.
However, such an attack is limited in two respects. First, the adversary will have
to wait for a relatively long period of time to collect a large number of valid
key numbers that it is blocking. Second, the adversary can send only as many
packets as the number of key numbers it has collected, i.e. such an attack can
be sustained for only a short period of time.

6 Performance Analysis

6.1 Comparison

Protocol DD ADD
Communication rounds 4 4

Overhead 34bytes+Data size Data size
Node Computation 1 hmac 0 hmac

We have simulated ADD on NS2 version 2.28, a network simulator. We
adopted a regular n × n grid with n2 sensor nodes as our basic simulation net-
work topology. The communication radius is set to

√
2 which allows the nearest

eight neighbors to be reached. The base station is placed at the left bottom,
and the source node is at the right top. The following table shows our basic
configurations of this simulation.

Parameter Value
Total Area 10m × 10m ∼ 100m × 100m

Number of nodes 10 ∼ 150
Initial Energy 5 Joule/Node

Data rate 300 kbps
Transmission Range 30m

Packet size 64 bytes
Data Sources 1∼ 5
Offered load 4 ∼ 6 pkts. per sec

We set up multiple test configurations, such as simulation time is set to 5
second,10 second, 20 second and 50 second to make the simulation running in
different configurations.

6.2 Communication Overhead

Because the steps of ADD has totally complied with the communication steps of
original Directed Diffusion, ADD has the same communication rounds with DD.



376 E.K. Wang, L.C.K. Hui, and S.M. Yiu

Fig. 4. Average delay of each node

Fig. 5. Total delay of all nodes

The only extra overhead is that the size of transmitted data of ADD is bigger
than DD and the computation of HMACs.

In the process of generating one-way hash key chain, we adopt One-way se-
quence number generation introduced in [6]. We use 30 bytes data as original
interest test data because the default packet size is 30 bytes. A complete au-
thenticated DD packet includes Interest(or Data), Blacklist, HMAC output and
Key. We adopt SHA-1 as HMAC function and key length is 32 bits(4 bytes). The
output size of HMAC of SHA-1 is 20 bytes. The blacklist is 10 bytes default. So
the complete packet size is 64 bytes, and this is the communication overhead.
Figure 4 is the result of average delay of packets transmission and figure 5 is
the result of total transmission delay. From the results, we can see that the cost
increase only 0.3 second when the network size is 50 ,and it increases about 1
second when the network size is 150. Then we know that the time delay of the
ADD message is acceptable for most applications.



Authenticated Directed Diffusion 377

7 Conclusion

The original directed diffusion protocol for wireless sensor network has not in-
volved security issues. We propose an extended directed diffusion protocol for
wireless sensor network with authenticity and integrity capability without in-
creasing communication rounds. It can effectively avoid DoS attack. It can ef-
fectively defend sinkhole attack and bogus routing information attack. Although
it’s overall computation overhead is higher than the original DD protocol, it is
still worthy for its security performance.

7.1 Future Work

In the coming future, we are going to simulate various attacks on Authenticated
Directed Diffusion protocol to validate its security properties.

References

1. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Proto-
cols for Sensor Networks. Mobile Computing and Networking, Rome, Italy (2001)

2. Hu, Y.-C., Perrig, A., Johnson, D.B.: Packet leashes: a defense against wormhole
attacks in wireless networks. In: IEEE Infocom (2003)

3. Wang, X., Yang, L., Chen, K.: SDD: Secure Directed Diffusion Protocol for Sensor
Networks. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS
2004. LNCS, vol. 3313, pp. 205–214. Springer, Heidelberg (2005)

4. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
Diffusion for Wireless Sensor Networking. ACM/IEEE Transactions on Network-
ing 11(1), 2–16 (2002)

5. Lamport, L.: Constructing digital signatures from one-way function. Technical re-
port SRI-CSL-98, SRI International (October 1979)

6. Deng, J., Han, R., Mishra, S.: The performance evaluation of intrusion-tolerant
routing in wireless sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003.
LNCS, vol. 2634. Springer, Heidelberg (2003)

7. Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures, Sensor Network Protocols and Applications (SNPA 2003) (May
2003)

8. Wood, A., Stankovic, J.: Denial of service in sensor networks. IEEE Com-
puter 35(10), 54–62 (2002)

9. Di Pietro, R., Mancini, L.V., Law, Y.W., Etalle, S., Havinga, P.: LKHW: a directed
diffusion-based secure multicast scheme for wireless sensor networks. In: Parallel
Processing Workshops, 2003. Proceedings 2003 International Conference, October
6-9, 2003, pp. 397–406 (2003)

10. Dousse, O., Tavoularis, C., Thiran, P.: Delay of Intrusion Detection in Wireless
Sensor Networks. In: MobiHoc 2006, Florence, Italy, May 22–25 (2006)



A New Message Recognition Protocol for
Ad Hoc Pervasive Networks

Atefeh Mashatan and Douglas R. Stinson�

Cryptography, Security, and Privacy Research Group
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

{amashata,dstinson}@math.uwaterloo.ca
http://crysp.uwaterloo.ca/

Abstract. We propose a message recognition protocol which is suitable
for ad hoc pervasive networks without the use of hash chains. Hence,
we no longer require the devices to save values of a hash chain in their
memories. This relaxes the memory requirements. Moreover, we do not
need to fix the total number of times the protocol can be executed which
implies a desired flexibility in this regard. Furthermore, our protocol is
secure without having to consider families of assumptions that depend
on the number of sessions the protocol is executed. Hence, the security
does not weaken as the protocol is executed over time. Last but not
least, we provide a practical procedure for resynchronization in case of
any adversarial disruption or communication failure.

Keywords: Cryptographic Protocols, Authentication, Recognition,
Pervasive Networks, Ad Hoc Networks.

1 Introduction

In this paper, we examine the notion of message recognition which is a weaker
notion compared to message authentication. It refers to the process where two
parties initially meet in an authenticated setting, and later, one party is assured
that the received message over the insecure channel is sent from the same second
party. In other words, message recognition provides data integrity with respect
to the source of the message. Standard approaches of public-key and secret-key
cryptography provide many solutions for message authentication or recognition,
digital signature schemes for instance. However, these techniques either require
enough computational power to handle public-key operations, or they assume
the existence of a shared secret. These assumptions may not be reasonable for
some constraint scenarios such as ad hoc pervasive networks. Moreover, assuming
a trusted third party in ad hoc networks settings is often undesirable.

This setting has been motivated in [5] by the following example. Consider
Alice and Bob, two strangers who meet in a party for the first time. They make
� Douglas R. Stinson’s research is supported by NSERC discovery grant 203114-06.

M.K. Franklin, L.C.K. Hui, and D.S. Wong (Eds.): CANS 2008, LNCS 5339, pp. 378–394, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://crysp.uwaterloo.ca/


A New Message Recognition Protocol 379

a bet before they leave the party. Later, the outcome turns out to be in favour
of Alice, and a few days later, Bob receives a message claiming to be sent from
Alice. The message includes a bank account number and asks Bob to deposit
Alice’s prize to that bank account. How can Bob be assured that this message
was indeed sent from the entity who introduced herself as “Alice” in the party?
That is, Bob wants to recognize “Alice”, whoever she was, or a message that
was sent from her. This problem has a solution if Alice and Bob exchange some
information, which is not necessarily secret, at the party.

As another example, suppose we let Alice and Bob be small devices. They once
meet in an authenticated setting. Then, they are placed in a hostile environment.
Later, Alice sends messages to Bob and she wants Bob to recognize the messages
that are sent from her. The adversary, Eve, is present all the time and would
like to make Bob accept a message sent from Eve as a message from Alice. Eve
has the ability to choose messages and make Alice send them to Bob. Note that
Eve wins if Bob accepts a message that Alice has never sent to be a message
from Alice.

The common approach to these problems in the literature is to assume the
availability of two channels: an authenticated narrow-band channel for the ini-
tialization step and the usual insecure broadband channel. The authenticated
channel is denoted by ⇒ and the insecure channel by →. The adversary is as-
sumed to have full control over the messages sent over the insecure channel. She
can listen to these messages, modify them or stops any flow over this channel.
She can also insert a new message of her choice over this channel. On the other
hand, she can only read the messages sent over the authenticated channel, but
cannot modify them or stall them from delivery.

Recently, there has been a lot of activity in this area of research to design
message recognition protocols. Assuming availability of a time-stamping service
or the use of signatures, [1] proposes a message recognition protocol. Assum-
ing a rather heavy amount of computation and communication, [8] proposes
a recognition protocol called “Remote User Authentication Protocol”. Using a
hash chaining technique, [5] and [9] proposed an interactive recognition proto-
col where the number n is fixed to be the maximum number of messages to be
authenticated. Each pair of users willing to communicate must have a separate
pair of hash chains, which puts a relatively heavy memory requirement on the
small devices. Furthermore, the security assumptions for this protocol depend
on the number of sessions the protocol has been executed which gives birth to
the notion of “depth-i security”. We briefly summarize the existing results and
discuss why they need to be improved.

We further propose a new design for message recognition in ad hoc pervasive
networks and explain the advantages of using this new design compared to pre-
vious alternatives. Our proposed recognition protocol does not make use of hash
chains. As a result, we no longer require the small devices to save values of a
hash chain in their memories. This relaxes the memory requirements. Moreover,
the passwords are set to be chosen at random in each session. Hence, they are
independent of one another and are refreshed in each session. This can be done



380 A. Mashatan and D.R. Stinson

for an arbitrary number of times, so we do not need to fix the total number of
times the protocol can be executed.

As the passwords corresponding to each session are chosen at random and
are independent of one another, we do not need to consider assumptions that
depend on the number of sessions the protocol is executed. Consequently, the
security does not weaken as the protocol is executed over time. We commit to a
password by sending its hash value, so that Eve cannot change it. Further, we
need to bind two consecutive passwords, in order to detect adversarial intrusions
and to be able to resynchronize in such a case. Last but not least, we provide
a practical procedure for resynchronization in case of any possible adversarial
disruption or communication failure.

Section 2 summarizes the existing results on message recognition protocols. In
Sect. 3, we propose a new message recognition protocol and its resynchronization
technique followed by a discussion about the advantages of using this protocol.
Section 5 is devoted to the proof of the security of this protocol based on the
assumptions listed in Sect. 4.

2 Literature Review on Message Recognition Protocols

Here, we briefly examine the existing recognition protocols and discuss their
performance and practicality in ad hoc pervasive settings where communication
bandwidth, computational power, and memory capacity are rather low.

Anderson et al. proposed the Guy Fawkes protocol in [1]. The first variant of
this protocol assumes that a time-stamping service is available for every session.
The second variant avoids this assumption by using a signature in the initial-
ization step. Moreover, it requires that users commit to messages one session a
head of time. That is, users are supposed to perform two sessions to authenticate
a single message.

The “Remote User Authentication Protocol” was proposed in [8]. It uses a
message authentication code (MAC) and requires that users compute a lot of
MAC values. The MAC values are sent over the authenticated channel. This
is a concern in our setting since the authenticated channels usually have low
bandwidth. Moreover, the amount of computations and communication assumed
in this protocol may not be desirable in a pervasive network of devices with low
computational power.

The “Zero Common-Knowledge (ZCK)” protocol was proposed in [9]. They
use the values of a hash chain as keys for a MAC. This protocol was implemented
in [4] as a proof-of-concept. The observations from this implementation ensured
that this protocol is suitable for devices with low computational power, low code
space, low communication bandwidth and low energy resources. It also raised a
couple of areas of concern, mainly denial-of-service and memory complexity.

Note that [4] explored the practicality of the ZCK protocol and not its security
proof. Later, [5] found a problem in the security proof of this protocol and
proposed a variant to fix the problem. Similar to the original ZCK protocol,
they form a hash chain by fixing the number n to be the maximum number



A New Message Recognition Protocol 381

of messages to be authenticated. Alice and Bob randomly choose a0 and b0,
respectively. Then, they respectively form hash chains ai = h(ai−1) and bi =
h(bi−1), i = 1, . . . , n. Note that for each pair of users wishing to communicate,
there must be a separate pair of hash chains. This means that if a device wants to
communicate with m users, it has to deal with m different hash chains of length
n. This is of concern when dealing with small devices in a pervasive network
with memory constraints, also noted by [4].

Furthermore, [5] has to consider security assumptions that depend on the
number of sessions the protocol has been executed in order to prove the security
of their protocol in the standard model. In particular, they have to treat the first
session separately and then deal with the security of session i inductively. In other
words, they prove “depth-i security” of their protocol based on assumptions such
as “depth-i non-invertability”, “depth-i Second Pre-image Resistance”, “depth-
i unforgeability”, and “depth-i combined security”. In other words, these are
families of assumptions, that should hold for each i, 1 ≤ i ≤ n. As they note
in their paper, one could argue that, as the number of times the protocol is
executed, its security weakens.

It is of interest to design a message recognition protocol that avoids assump-
tions that depend on the number of sessions the protocol has been executed
and do not require the devices to have a high enough memory capacity to save
several hash chains. Next, we describe a new message recognition protocol with
such properties.

3 A New Message Recognition Protocol without the Use
of Hash Chains

In this section, we describe the details of our proposed protocol. The initial-
ization phase, execution of the protocol, and the resynchronization process are
separately described. The section is concluded by examining the advantages of
using this protocol in comparison to previous designs.

We begin by describing the internal states of Alice and Bob. Internal state of
Alice includes:

– x0 and x1: the passwords for this session and the next session, respectively.
– X0 = H(x0) and X1 = H(x1): the committing hash values of the passwords.
– X0 = H(x0, X1) = H(x0, H(x1)): the binding hash value of the passwords.
– y∗−1, Y ∗

0 , Y∗
0 : Bob’s most recent password, committing hash value, and bind-

ing hash value accepted by Alice.

Similarly, internal state of Bob includes:

– y0 and y1: the passwords for this session and the next session, respectively.
– Y0 = H(y0) and Y1 = H(y1): the committing hash values of the passwords.
– Y0 = H(y0, Y1) = H(y0, H(y1)): the binding hash value of the passwords.
– x∗−1, X∗

0 , X ∗
0 : Alice’s most recent password, committing hash value, and

binding hash value accepted by Bob.



382 A. Mashatan and D.R. Stinson

Alice Bob

Choose random x0 and x1 and Choose random y0 and y1 and form
form X0 := H(x0), X1 := H(x1), Y0 := H(y0), Y1 := H(y1),

and X0 := H(x0, X1)
X0,X0=====⇒ and Y0 := H(y0, Y1)

Y0,Y0⇐=====

Let y∗
−1 :=⊥, Y ∗

0 = Y0, Y∗
0 = Y0. Let x∗

−1 :=⊥, X∗
0 = X0, X ∗

0 = X0.

Fig. 1. Initialization Phase of the New Message Recognition Protocol

In this protocol, x0 and y0 are considered to be passwords of the current session.
Similarly, x1 and y1 are the passwords of the next session. We commit to a
password by sending its hash value, so that Eve cannot change it. Further, we
bind two consecutive passwords, in order to detect adversarial intrusions and to
be able to resynchronize in such a case.

Alice performs the initialization phase as follows:

– Choose random x0 and x1.
– Compute X0 := H(x0), X1 := H(x1), and X0 := H(x0, X1).
– Send X0,X0 to Bob over the authenticated channel.
– Receive Y0,Y0 from Bob over the authenticated channel.
– Let y∗−1 :=⊥, Y ∗

0 = Y0, and Y∗
0 = Y0.

Similarly, Bob executes the initialization phase according to the following steps:

– Choose random y0 and y1.
– Compute Y0 := H(y0), Y1 := H(y1), and Y0 := H(y0, Y1).
– Receive X0,X0 from Alice over the authenticated channel.
– Send Y0,Y0 to Alice over the authenticated channel.
– Let x∗−1 :=⊥, X∗

0 = X0, and X ∗
0 = X0.

The initialization phase of the protocol is depicted in Fig. 1. Next, we move on
to the description of the proposed message recognition protocol illustrated in
Fig. 2.

On input (m, Bob), Alice’s execution can be described as follows:

– Choose a random x2.
– Compute X2 := H(x2),X1 := H(x1, X2), and h = H [m,x0].
– Send m,h to Bob and wait to receive y′0, Y

′
1 ,Y ′

1 from Bob. Resend m,h if
Bob did not respond.

– If H(y′0) = Y ∗
0 and H(y′0, Y ′

1) = Y∗
0 , then send (x0, X1,X1) to Bob and

update internal state: y∗−1 := y′0, Y
∗
0 := Y ′

1 , Y∗
0 := Y ′

1, x0 := x1, x1 := x2,
X0 := X1, X1 := X2, and X0 := X1. Otherwise, initiate resynchronization
with Bob.



A New Message Recognition Protocol 383

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗

−1, Y ∗
0 ,Y∗

0 . y0, y1, Y0, Y1, Y0, x∗
−1, X∗

0 ,X ∗
0 .

Alice Bob

Receive input (m, Bob)
Choose a random x2 and form
X2 := H(x2),X1 := H(x1, X2).

Compute h = H[m, x0].
m, h−−−−−−−−−−−→ Receive m′, h′.

Choose a random y2 and form

Receive y′
0, Y ′

1 ,Y′
1.

y0, Y1,Y1←−−−−−−−−−−− Y2 := H(y2),Y1 := H(y1, Y2).

If H(y′
0) = Y ∗

0 and H(y′
0, Y ′

1 ) = Y∗
0 ,

then send (x0, X1,X1) and
update your internal state:

y∗
−1 := y′

0, Y ∗
0 := Y ′

1 , Y∗
0 := Y′

1,
x0 := x1, x1 := x2,
X0 := X1, X1 := X2, X0 := X1.

else initiate resynchronization.
x0, X1,X1−−−−−−−−−−−→ Receive x′

0, X′
1,X ′

1.

If H(x′
0) = X∗

0 , H(x′
0, X′

1) = X ∗
0 ,

and h′ = H[m′, x′
0],

then update your internal state:
x∗
−1 := x′

0, X∗
0 := X′

1, X ∗
0 := X ′

1,
y0 := y1, y1 := y2,
Y0 := Y1, Y1 := Y2, Y0 := Y1,
and output (Alice, m′).

else initiate resynchronization.

Fig. 2. New Message Recognition Protocol

Bob, on the other hand executes the protocol in the following manner:

– After receiving m′, h′, choose a random y2.
– Compute Y2 := H(y2) and Y1 := H(y1, Y2).
– Send y0, Y1,Y1 to Alice and wait to receive x′0, X ′

1,X ′
1. Resend y0, Y1,Y1 to

Alice if Alice did not respond.
– If H(x′0) = X∗

0 and H(x′0, X ′
1) = X ∗

0 , and h′ = H [m′, x′0], then update
internal state: x∗−1 := x′0, X

∗
0 := X ′

1, X ∗
0 := X ′

1, y0 := y1, y1 := y2, Y0 :=
Y1, Y1 := Y2, and Y0 := Y1, and output (Alice, m′). Otherwise, initiate
resynchronization with Alice.

In case of no adversarial intrusion or communication failure, all the conditions
verify and Alice and Bob will not initiate a resynchronization process. When they
realize that one of the conditions does not hold, they suspect a communication
failure or a possible adversarial intrusion. Hence, they need to resynchronize in
order to make sure they have the correct commitment and binding hash values.
The synchronization process is illustrated in Fig. 3. Bob sends y0, Y1,Y1 to Alice
and Alice sends x0, X1,X1 to Bob. Note that Alice should already have y0, Y1
and she is verifying if they match with what she has. Similarly, Bob is verifying



384 A. Mashatan and D.R. Stinson

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗

−1, Y ∗
0 ,Y∗

0 . y0, y1, Y0, Y1, Y, x∗
−1, X∗

0 ,X ∗
0 .

Alice Bob

Choose a random x2 and form Choose a random y2 and form
X2 := H(x2),X1 := H(x1, X2). Y2 := H(y2),Y1 := H(y1, Y2).

Receive y′
0, Y ′

1 ,Y′
1.

y0, Y1,Y1←−−−−−−−−−−−

x0, X1,X1−−−−−−−−−−−→ Receive x′
0, X′

1,X ′
1.

If y∗
−1 = y′

0 and Y ∗
0 = Y ′

1 , If x∗
−1 = x′

0 and X∗
0 = X′

1,
then Y∗

0 := Y′
1, then X ∗

0 := X ′
1,

else initiate resynchronization. else if H(x′
0) = X∗

0 and H(x′
0, X′

1) = X ∗
0 ,

then x∗
−1 := x′

0, X∗
0 := X′

1, X ∗
0 := X ′

1.
else initiate resynchronization.

Fig. 3. The Resynchronization Process

if x0, X1 match with what he has. However, the values of X1 and Y1 are new.
It is possible for the adversary to make either Alice or Bob compute a binding
hash value in a bogus session. In that case, the binding hash value is refreshed.
Note that the resynchronization process is not symmetrical. This is due to the
fact that Bob may detect an intrusion after Alice has updated her state. In this
case, the values x0, X1,X1 that Alice sends during the resynchronization process
need to be verified differently.

Since we are not using a hash chain, the memory requirement on the de-
vices is relaxed. The octuple (x0, x1, X0, X1,X0, y

∗
−1, Y

∗
0 ,Y∗

0 ) is all Alice needs
to communicate with Bob and she will need another octuple for each different
user. In the previous protocols, the devices had to deal with a hash chain for
every single device they wanted to communicate with. Storing all the values of a
hash chain, for example a0, a1, . . ., an is too demanding for low-end devices. On
the other hand, storing only the root value of the hash chain, for instance a0,
requires too many computations at each session. The alternative is to employ
a time-storage trade-off and store some of the hash values, see for example [2].
Still, there are some storage and computational requirements associated with
this implementation. Our proposal for not having to deal with a hash chaining
technique avoids any memory or computational requirement of this nature for
every session.

Moreover, the passwords are set to be chosen at random in each session.
Hence, they are independent of one another and are refreshed in each session.
As a result, we do not need to consider assumptions that depend on the number
of sessions the protocol is executed. Consequently, the security does not weaken
as the protocol is executed over time.

Furthermore, the devices can run this protocol as many times as they want
and the total number of sessions is not fixed. This provides extra flexibility
compared to the protocols based on the hash chain technique. Next, we look at
the security assumptions relevant for this new protocol.



A New Message Recognition Protocol 385

4 Security Assumptions

In this section, we define new notions of hash function security, mainly Paired
Pre-image Resistance, (PPR), Paired Second-Pre-image Resistance,
(PSPR), Paired Collision Resistance, (PCR), Binding Pre-image Re-
sistance, (BPR) . Each notion is presented as a game between a player Oscar
and a Challenger. Note that these assumptions are independent of the number
of sessions the protocol has been executed. In other words, in contrast to the
approach taken in [5], where they have to assume “depth-i non-invertability”,
“depth-i Second Pre-image Resistance”, “depth-i unforgeability”, and “depth-i
combined security” for every i, 1 ≤ i ≤ n, we only require four assumptions.

Oscar Challenger

Choose random y0 and y1 and form
Y0 := H(y0) and Y0 := H(y0, Y1).

Y0,Y0←−−−−−

Find y′
0 and Y ′

1 .
y′
0, Y ′

1−−−−−→

Eve wins if Y0 = H(y′
0) and

Y0 = H(y′
0, Y ′

1).

Fig. 4. Paired Pre-image Resistance

Depicted in Fig. 4 is the PPR notion. We note that the PPR property is anal-
ogous to the notion of “depth-2 non-invertability” defined in [5]. Furthermore,
this one assumption is replacing a whole family of assumptions; termed “depth-i
non-invertability”, for 1 ≤ i ≤ n.

Oscar Challenger

Choose random x0 and x1 and form
X1 := H(x1).

x0, X1←−−−−−

Find x′
0 and X′

1, such that

(x0, X1) �= (x′
0, X′

1)
x′
0, X′

1−−−−−→

Eve wins if H(x0) = H(x′
0) and

H(x0, X1) = H(x′
0, X′

1).

Fig. 5. Paired Second-pre-image Resistance

Figure 5 illustrates the PSPR notion. This notion is analogous to “depth-2
Second pre-image Resistance” defined in [5]. It is replacing the family of assump-
tions termed “depth-i Second pre-image Resistance”, for i, 1 ≤ i ≤ n.



386 A. Mashatan and D.R. Stinson

Oscar Challenger

Choose random x0, x1, x2 and and form
X0 := H(x0), X1 := H(x1), X2 := H(x2),
X0 := H(x0, X1) and X1 := H(x1, X2) .

X0, X0←−−−−−−
m−−−−−−→ Compute h := H(m, x0).

h←−−−−−−

Choose m such that m �= m′.
m′, h′

−−−−−−→ Eve wins if h′ = H(m′, x0).

Fig. 6. Paired Collision Resistance

The notion of PCR is depicted in Fig. 6. Analogous to this notion, [5] defines
“depth-2 unforgeability”. Note that the PCR notion is replacing a family of
assumptions termed “depth-i unforgeability”, for i, 1 ≤ i ≤ n.

In Sect. 5, we will see that the PCR, PPR, and PSPR notions prevent attacks
that start and finish during one session. Moreover, attack scenarios spanning
over two sessions are also analyzed and the BPR notion illustrated in Fig. 7 is
associated to these attacks.

Oscar Challenger

Choose random y0, y1, y2 and and form
Y ∗
0 := H(y0), Y1 := H(y1),Y2 := H(y2),

Y ∗
0 ,Y∗

0←−−−−−− Y∗
0 := H(y0, Y1), and Y1 := H(y1, Y2).

Y∗
0 �= (Y∗

0 )′
(Y∗

0 )′
−−−−−−→

y0, Y1,Y1←−−−−−−

Y ′
1−−−−−−→ Eve wins if H(y0, Y ′

1 ) = (Y∗
0 )′.

Fig. 7. Binding pre-image Resistance

Next, we prove the security of our protocol, based on the assumption that
PPR, PSPR, PCR, and BPR games are hard to win.

5 Security of the Proposed Recognition Protocol

Recall that the goal of the adversary is to make Bob accept a message m′ that
was never sent from Alice. A successful attack is where that Bob is deceived and
he outputs (Alice, m′).



A New Message Recognition Protocol 387

Let (x0, x1, X0, X1,X0, y
∗
−1.Y

∗
0 ,Y∗

0 ) and (y0, y1, Y0, Y1,Y0, x
∗
−1, X

∗
0 ,X ∗

0 ) be the
internal states of Alice and Bob, respectively. Now, assume that Eve, having
been passive all along, mounts a successful attack for the first time and Bob
actually outputs (Alice, m′), where m �= m′. Since, Eve had been passive before
this attack, we can assume that y∗−1 = y0, Y

∗
0 = H(y0) = Y0,Y∗

0 = Y0 =
H(y0, H(y1)), x∗−1 = x0, X

∗
0 = X0 = H(x0), and X ∗

0 = X0 = H(x0, H(x1)). Eve
may complete her attack in one session, or she may mount an attack that spans
more than one session. First, we examine one-round attacks.

5.1 One-Session Attacks

In order to exhaustively list all possible one-round attacks against our protocol,
we adapt the notation of [3] in labelling different orderings of the flows. This
notation labels each flow sent by the adversary by either A, if the recipient is
Alice, or by B, when the recipient is Bob. For example, an ordering of ABAB
corresponds to the following attack scenario:

– A: Eve sends m to Alice and she responds with m,h.
– B: Eve sends m′, h′ to Bob and he replies with y0, Y1,Y1.
– A: Eve sends y′0, Y ′

1 ,Y ′
1 to Alice and receives x0, X1,X1 from her.

– B: Eve sends x′0, X
′
1,X ′

1.

It is proved in [3] that the number of different possible attacks against a three
round protocol is

(4
2

)
= 6. These attacks are described, using the above men-

tioned labelling, to be AABB, ABBA, BABA, ABAB, BBAA, and BAAB. Next,
we will analyze each of these attack scenarios.

We prove that the BABA attack scenario can be reduced to the ABBA attack.
In other words, if the adversary can mount a successful attack of type BABA,
then she also succeeds in the ABBA attack scenario. Similarly, one can show that
the BAAB and ABBA attack scenarios can be reduced to the ABAB case. Hence,
it remains to investigate the AABB, BBAA, and ABAB attack scenarios. We
prove that the AABB, BBAA, and ABAB attacks are not possible by reducing
them to the PPR, PSPR, or PCR games. Then, we show the aforementioned
reductions.

Attack of Type AABB
Illustrated in Fig. 8 is the attack of type AABB. In this attack scenario, Eve
finishes her interactions with with Alice before she starts her interactions with
Bob. In other words, Eve has to first deceive Alice in order to get her to reveal
the information she needs to then deceive Bob.

If Eve successfully deceives Alice, then she receives (x0, X1,X1). Now, Eve
computes h′ = H(m′, x0), for m′ of her choice. She then sends m′, h′ to Bob.
Finally, she completes her attack with setting (x′0, X

′
1,X ′

1) = (x0, X1,X1) and
sending it to Bob.

In order to deceive Alice, Eve has to find y′0 and Y ′
1 such that Y0 = H(y′0) and

Y0 = H(y′0, Y
′
1), where Y0 and Y0 were transmitted in the session immediately

before the attack. Note that Eve, not having seen (y0, Y1), has sent (y′0, Y
′
1),

which has been accepted by Alice. This is exactly the problem of PPR, depicted
in Fig. 4.



388 A. Mashatan and D.R. Stinson

Alice Eve Bob

m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

Fig. 8. Attack of Type AABB

Attack of Type BBAA
The attack of type BBAA is illustrated in Fig. 9. In this scenario, Eve inter-
acts with Alice after she has finished interacting with Bob. That is, she re-
ceives (y0, Y1,Y1) from Bob before she has to choose (y′0, Y ′

1 ,Y ′
1). If she chooses

(y′0, Y
′
1 ,Y ′

1) such that (y0, Y1) �= (y′0, Y
′
1) and remains undetected by Alice, then,

Eve can be reduced to a successful player against the PSPR game of Fig. 5.
We deal with the case where (y0, Y1) = (y′0, Y

′
1) and Y1 �= Y ′

1 in Sect. 5.2.
The only remaining case is that, having received (y0, Y1,Y1) from Bob, Eve lets
(y′0, Y ′

1 ,Y ′
1) = (y0, Y1,Y1) to avoid being detected by Alice.

A successful attack of this type implies that Bob has accepted m′. That is,
not having seen (x0, X1), Eve has found x′0, X

′
1. Once Eve finds the appropriate

Alice Eve Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Fig. 9. Attack of Type BBAA



A New Message Recognition Protocol 389

Alice Eve Bob

m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→ B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

Fig. 10. Attack of Type ABAB

x′0 and X ′
1, she can compute h′ = H(m′, x′0), for an m′ of her choice. Note that

Eve has received X0 and X0 from the previous session. Now, she has to find
x′0, X

′
1 such that X0 = H(x′0) and X0 = H(x′0, X

′
1). This translates to the notion

of PPR if we replaces each x value by its corresponding y value.

Attack of Type ABAB
Figure 10 illustrates the attack of type ABAB. In this attack, Eve receives the
correct (y0, Y1,Y1) from Bob before she has to send (y′0, Y ′

1 ,Y ′
1) to Alice. As it

was discussed in the case of the BBAA attack, Eve will be detected by Alice
unless she sets (y′0, Y

′
1 ,Y ′

1) = (y0, Y1,Y1). This way Alice will not detect Eve
and she will reveal (x0, X1,X1). The adversary has two choices now. She either
sets (x′0, X

′
1) = (x0, X1) and send it to Bob, or she sends (x′0, X

′
1) to Bob where

(x′0, X ′
1) �= (x0, X1). We will analyze each of these two cases separately.

Let us first consider the case where (x′0, X
′
1) = (x0, X1). In this case, the

adversary has collected (X0,X0) from previous session. She then sendsm to Alice
and Alice replies with (m,h). She will then send (m′, h′) to Bob. At this point
the rest of the flows are determined to be the following: She receives (y0, Y1,Y1)
from Bob, sets (y′0, Y

′
1 ,Y ′

1) = (y0, Y1,Y1), and sends it to Alice. Further, she
receives (x0, X1,X1) from Alice, lets (x′0, X

′
1,X ′

1) = (x0, X1,X1), and sends it
Bob. Hence, this case is exactly the notion of PCR depicted in Fig. 6.

The second case is when (x′0, X ′
1) �= (x0, X1). Assume that Eve can mount

a successful attack of type ABAB with (x′0, X
′
1) �= (x0, X1). That is, she has

collected X0,X0 from previous session. She chooses m and receives h such that
h = H(m,x0). Then, she submits m′, h′. Finally, she receives x0, X1 and she
is supposed to send x′0, X

′
1 such that (x′0, X

′
1) �= (x0, X1), H(x0) = H(x′0),

H(x0, X1) = H(x′0, X
′
1), and h′ = H(m′, X ′

0). We reduce Eve to a successful
player against the Challenger of PSPR game, depicted in Fig. 5. The reduction
is illustrated in Fig. 11.

Note that, Oscar is playing against the Challenger of PSPR and at the same
time he is playing the role of both Alice and Bob against Eve.



390 A. Mashatan and D.R. Stinson

Eve Oscar Challenger

Choose random x0 and x1

Let X0 := H(x0)
x0, X1←−−−−−− and form X1 := H(x1).

and X0 := H(x0, X1).
X0,X0←−−−−−−

m−−−−−−→ Compute h := H(m, x0).

h←−−−−−−

m′, h′
−−−−−−→

x0, X1←−−−−−−

x′
0, X′

1−−−−−−→ Check if (x′
0, X′

1) �= (x0, X1)
x′
0, X′

1−−−−−−→

Oscar wins if H(x0) = H(x′
0)

and H(x0, X1) = H(x′
0, X′

1).

Fig. 11. Reducing Eve to a Player Against the Challenger of PSPR

We begin by reducing the BABA attack to the ABBA attack. Further, we
reduce the ABBA attack to the ABAB attack that was analyzed in Sect. 5.
Finally, the only remaining attack scenario, BAAB, is also reduced to the ABAB
attack. This concludes the analysis of the six different attack scenarios.

Reducing BABA attack to ABBA Attack
Attack of type ABBA is depicted in Fig. 12 and Fig. 13 illustrates the attack of
Type BABA.

These two attacks differ only in the order of the first two steps. The ABBA
attack is as follows:

Alice Oscar Bob

m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→ B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Fig. 12. Attack of Type ABBA



A New Message Recognition Protocol 391

Alice Oscar Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−
m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Fig. 13. Attack of Type BABA

– A: Oscar sends m to Alice and she responds with m,h.
– B: Oscar sends m′, h′ to Bob and he replies with y0, Y1,Y1.
– B: Oscar sends x′0, X

′
1,X ′

1.
– A: Oscar sends y′0, Y

′
1 ,Y ′

1 to Alice and receives x0, X1,X1 from her.

The BABA attack has the following order:

– B: Oscar sends m′, h′ to Bob and he replies with y0, Y1,Y1.
– A: Oscar sends m to Alice and she responds with m,h.
– B: Oscar sends x′0, X

′
1,X ′

1.
– A: Oscar sends y′0, Y

′
1 ,Y ′

1 to Alice and receives x0, X1,X1 from her.

Note that in the BABA attack scenario, the choice of m is independent of what
the values of y0, Y1 and Y1 are. That is, knowing y0, Y1,Y1 before choosing m is
not going to help Oscar. On the other hand, he is committing himself to m′, h′

before receiving any values, such as h, that could possibly help him. If Oscar
wins by first choosing m′, h′ and then receiving h in the BABA attack scenario,
then he can also win the ABBA attack by using the same values m,m′, and h′.

Reducing ABBA Attack to ABAB
Recall the ABAB attack described in Sect. 5:

– A: Eve sends m to Alice and she responds with m,h.
– B: Eve sends m′, h′ to Bob and he replies with y0, Y1,Y1.
– A: Eve sends y′0, Y ′

1 ,Y ′
1 to Alice and receives x0, X1,X1 from her.

– B: Eve sends x′0, X ′
1,X ′

1.

This attack differers from the ABBA attack in the order of the last two steps.
In the ABAB attack, Eve first receives x0, X1,X1 from Alice, then she has to
send x′0, X ′

1,X ′
1 to Bob. Whereas in the case of the ABBA attack, Oscar has to

send x′0, X
′
1,X ′

1 to Bob before he receives x0, X1,X1 from Alice. If Oscar has a
winning strategy in the ABBA attack, the Eve can use him in her ABAB attack
by sending the same values of x′0, X ′

1,X ′
1 that Oscar sends to Bob.



392 A. Mashatan and D.R. Stinson

Alice Oscar Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−
m←−−−−−−−−−−− A

m, h−−−−−−−−−−−→

y′
0, Y ′

1 ,Y′
1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
x′
0, X′

1,X ′
1−−−−−−−−−−−→

Fig. 14. Attack of Type BAAB

Reducing BAAB Attack to ABAB
Depicted in Fig. 14 is the attack Type of BAAB.

Recall that knowing y0, Y1,Y1 before choosing m is not going to help Oscar.
Moreover, in the BAAB attack, Oscar is first committing himself to m′, h′. If
Oscar wins the BAAB attack by first choosing m′, h′ and then receiving h, then
so will Eve in the ABAB attack, by just using the same values m,m′, and h′.

5.2 Two-Session Attacks

Now consider attack scenarios which span two or more sessions. The adversary
is active but remains undetected in all sessions of the attack. She then submits
her message in the last session of the attack. If she tampers with y0, Y1, x0, or X1
and remains undetected, then we go back to the cases described above. Hence,
it remains to examine the cases when she changes the binding hash values. We
look at the case where Eve changes the value of Y1 to Y ′

1. The case where Eve
alters X1 to X ′

1 is analogous due to the symmetry of the protocol structure.
Assume that Eve changes Y1 to Y ′

1 and does not touch y0 or Y1. She goes
undetected in this session because Alice verifies y0 and Y1, but only records Y ′

1
without verification. She then updates her state as follows y∗−1 := y0, Y ∗

0 := Y1,
(Y∗

0 )′ := Y ′
1.

In the next session, Alice sends (y0, Y1,Y1) and Eve has to change it to an ap-
propriate (y′0, Y

′
1 ,Y ′

1) to remain undetected. Otherwise, Alice will call for resyn-
chronization. Alice checks to see if H(y′0) = Y ∗

0 and H(y′0, Y ′
1) = (Y∗

0 )′. We treat
the two cases y0 = y′0 and y0 �= y′0 separately.

If H(y′0) = Y ∗
0 and y0 �= y′0, then Eve, having seen y0, has found y′0 such that

H(y′0) = H(y0). This means that Eve has found a second pre-image of y0.
On the other hand, when y0 = y′0, the condition H(y′0) = Y ∗

0 holds. Then,
Alice verifies to see if H(y0, Y ′

1) = (Y∗
0 )′. If it holds, then Eve is a successful

player in the BPR game of Fig. 7.



A New Message Recognition Protocol 393

If the adversary were to mount an attack that spans over more than two
rounds, she would have to successfully pass the second round. However, the
above discussion shows that the adversary can only pass the second session
without being detected if she can win the BPR game or SPR game.

5.3 The Security Theorem

We investigated all possible attacks against the message recognition protocol of
Fig. 2 by considering two different cases, namely if the attack is taking place
over one session, or if it spans more than one session. We examined these two
cases separately.

In the first case, there are six possible attack scenarios: BABA, BAAB, ABBA,
AABB, BBAA, and ABAB. Attacks of type BABA, BAAB, and ABBA can be
reduced to the ABAB case. Further, we showed that a successful adversary
(Eve) in attacks of type AABB, BBAA, and ABAB attacks can be reduced to a
successful player (Oscar) in the PPR, PSPR, or PCR games.

In the case of attacks that occur over more than one session, we showed that
the successful adversary can be reduced to a successful player against the BPR
or SPR games.

This concludes the analysis of different attack scenarios and proves the fol-
lowing theorem

Theorem 1. A successful adversary who can efficiently deceive Bob in out-
putting (Alice, m′), where Alice never sent m′, implies an efficient algorithm
in winning PPR, PSPR, PCR, or BPR hash function games.

This theorem precisely identifies the required properties for a hash function to
be used in the message recognition protocol of Fig. 2. There is no concrete
construction of such a hash function. However, no one knows how to prove that
a concrete construction of a hash function has any non-trivial property. It is
a standard approach taken in the literature to assume some properties for an
idealized hash function and to prove security of a given protocol assuming these
assumptions. Note that the same approach was taken in [5]. One can analyze
these games in the random oracle model and compare their hardness to more
standard hash function security notions, see for example [7] and [6].

6 Conclusion and Final Remarks

We proposed a new design for message recognition protocols suitable for ad
hoc pervasive networks. This proposal does not make use of hash chains. Hash
chaining techniques have been used in recent designs of message recognition
protocols. In this approach, the small devices are required to save values of a hash
chain in their memories for every single user they want to communicate with.
Since we do not use this technique, we no longer require the small devices to save
values of a hash chain in their memories. This relaxes the memory requirements.

Moreover, the passwords are chosen at random in each session. Hence, they
are independent of one another and are being refreshed in each session. This can



394 A. Mashatan and D.R. Stinson

be done for any arbitrary number of times, so we do not need to fix the total
number of times the protocol can be executed which implies a desired flexibility
in this regard.

As the passwords are independent of one another, we do not need to consider
assumptions that depend on the number of sessions the protocol is executed.
Whereas recent designs based on the hash chaining technique had to assume
families of assumptions based on the number of sessions the protocol is executed.
This implies that their security weakens as the number of sessions increases. Since
we are not using hash chains, the security of our protocol is independent of the
number of times the protocol is executed.

Finally, a practical procedure for resynchronization is provided. This implies
that in case of any possible adversarial disruption or communication failure, the
protocol can be recovered.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.:
A new family of authentication protocols. In: ACMOSR: ACM Operating Systems
Review, vol. 32, pp. 9–20 (1998)

2. Coppersmith, D., Jakobsson, M.: Almost optimal hash sequence traversal. Financial
Cryptography, 102–119 (2002)

3. Gehrmann, C.: Multiround unconditionally secure authentication. Designs, Codes,
and Cryptography 15(1), 67–86 (1998)

4. Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a low-power
environment. In: ICDCSW 2005: Proceedings of the Second International Workshop
on Wireless Ad Hoc Networking (WWAN) ICDCSW 2005), Washington, DC, USA,
pp. 933–938. IEEE Computer Society, Los Alamitos (2005)

5. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Entity recognition for sensor
network motes. GI Jahrestagung (2), 145–149 (2005)

6. Mashatan, A., Stinson, D.R.: Noninteractive two-channel message authentication
based on hybrid-collision resistant hash functions. IET Information Security 1(3),
111–118 (2007)

7. Mashatan, A., Stinson, D.R.: Interactive two-channel message authentication based
on interactive-collision resistant hash functions. International Journal of Information
Security (to appear, 2008)

8. Mitchell, C.J.: Remote user authentication using public information. In: Paterson,
K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 360–369. Springer,
Heidelberg (2003)

9. Weimerskirch, A., Westhoff, D.: Zero common-knowledge authentication for perva-
sive networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 73–87. Springer, Heidelberg (2004)



Author Index

Abdalla, Michel 133
Asano, Tomoyuki 31

Bringer, Julien 149

Carbunar, Bogdan 317
Chabanne, Hervé 149
Chen, Kefei 1
Choudhary, Ashish 285

Deng, Robert H. 1
Desmedt, Yvo 18

Fu, Shaojing 268, 278

Galindo, David 120
Ghodosi, Hossein 240
Großschädl, Johann 349
Guo, Jian 49

Hiwatari, Harunaga 31
Huang, Xinyi 64
Hudler, Matthias 349
Hui, Lucas C.K. 366

Icart, Thomas 149
Izabachène, Malika 133

Joye, Marc 98

Kato, Hidehiro 226
Koschuch, Manuel 349
Krüger, Michael 349
Kusakawa, Masafumi 31

Li, Chao 268, 278
Li, Fagen 108
Lipmaa, Helger 18
Liu, Joseph K. 80
Liu, Shengli 1
Lopez, Javier 120
Lou, Tiancheng 196

Mashatan, Atefeh 378
Matsuda, Seiichi 31
Mohebbipoor, S. Fahimeh 240
Morikawa, Yoshitaka 226
Mu, Yi 80

Nakahara Jr., Jorge 252
Nogami, Yasuyuki 226

Okeya, Katsuyuki 226
Orumiehchi, Mohammad Ali 240

Patra, Arpita 285
Payer, Udo 349
Phan, Duong Hieu 18
Pieprzyk, Josef 178
Pointcheval, David 133

Qiao, Youming 162

Rangan, C. Pandu 285
Roman, Rodrigo 120

Sakemi, Yumi 226
Shimizu, Koichi 332
Shirase, Masaaki 108
Srinathan, Kannan 285
Steinfeld, Ron 49
Stinson, Douglas R. 378
Sun, Bing 268, 278
Sun, Hung-Min 49
Susilo, Willy 80
Suzuki, Daisuke 332

Takagi, Tsuyoshi 108
Tartary, Christophe 162, 196
Tripunitara, Mahesh 317
Tso, Raylin 64
Tsurumaru, Toyohiro 332

Wang, Eric K. 366
Wang, Huaxiong 49, 178
Wang, Peishun 178
Weng, Jian 1
Wu, Mu-En 49

Yi, Xun 64
Yiu, S.M. 366
Yuen, Tsz Hon 80

Zhang, Yu 304
Zhu, Huafei 214


	Title Page
	Preface
	Organization
	Table of Contents
	Cryptosystems
	Chosen-Ciphertext Secure Proxy Re-encryption without Pairings
	Introduction
	Background
	Our Contributions
	Related Works
	Outline

	Definition and Security Notions of Proxy Re-encryptions
	Definition
	Security Notions

	Proposed Proxy Re-encryption Scheme
	Main Idea
	Construction
	Comparison

	Security Analysis
	Complexity Assumptions
	Security Proof

	Conclusions
	References

	Hybrid Damg{\aa}rd Is CCA1-Secure under the DDHAssumption
	Introduction
	Preliminaries
	Hybrid Damg{\aa}rd Cryptosystem
	Why We Cannot Prove CCA2-Security
	References
	A Some Known Public-Key Cryptosystems

	Efficient Dynamic Broadcast Encryption and Its Extension to Authenticated Dynamic Broadcast Encryption
	Introduction
	Efficient Dynamic Broadcast Encryption (DBE)
	Bilinear Maps
	Definition of Dynamic Broadcast Encryption
	Scheme1
	Security Analysis
	Efficiency

	Authenticated Dynamic Broadcast Encryption (ADBE)
	Definition of Authenticated Dynamic Broadcast Encryption
	Scheme2
	Security Analysis

	Conclusion
	References

	Cryptanalysis of Short Exponent RSA with Primes Sharing Least Significant Bits
	Introduction
	Preliminaries
	LSBS-RSA and the Notation: $\protect\alpha $, $\protect\beta $, and $\protect\gamma $
	Lattice Attack
	The Zhao-Qi Attack

	The Zhao-Qi Attack Revised
	Proposed Attack
	Further Discussions
	The Summary of Our Attack
	Experiments
	Further Improvement
	LSBS-RSA with Small Prime Difference

	Conclusion and Future Work
	References


	Signatures
	Efficient and Short Certificateless Signature
	Introduction
	Motivations
	Our Contributions

	Preliminaries
	Certificateless Signatures
	Security Model
	Bilinear Groups and Complexity Assumptions

	The Proposed Certificateless Short Signature Scheme
	SecurityProofs
	Performance Comparison
	Conclusion
	References
	Appendix

	Sanitizable Signatures Revisited
	Introduction
	Preliminaries
	Sanitizable Signatures Security Models
	Notation
	Syntax
	Security Model
	Various Properties and Their Implications in Security
	Generic Conversion

	Basic Building Blocks
	Signatures of Knowledge
	One Time Signature in the Standard Model
	Commitment for Pairings
	Efficient Range Proof
	Examples with Proof of Range

	Sanitizable Signature Scheme
	Security Result
	Comparison

	Conclusion
	References

	An Efficient On-Line/Off-Line Signature Scheme without Random Oracles
	Introduction
	Preliminaries
	Signature Schemes
	Intractability Assumptions

	Proposed On-Line/Off-Line Signature Scheme
	Analysis
	Proof of Security
	Efficiency Analysis

	Conclusion
	References

	On the Security of Online/Offline Signatures and Multisignatures from ACISP’06
	Introduction
	Preliminaries
	Security of ID-Based Online/Offline Signature Scheme
	Security Model
	The Xu-Mu-Susilo Scheme
	Our Analysis

	Security of ID-Based Multisignature Scheme
	Security Model
	The Xu-Mu-Susilo Scheme
	Our Analysis

	Security of the Generic Construction
	The Xu-Mu-Susilo Generic Construction
	Our Analysis

	About the Application to the DSR Protocol
	Conclusions
	References


	Identification, Authentication and Key Management
	A Killer Application for Pairings: Authenticated Key Establishment in Underwater Wireless Sensor Networks
	Introduction
	Wireless Sensor Networks
	Underwater Wireless Sensor Networks

	Non-interactive Identity-Based Key Agreement
	SOK - Sakai, Ohgishi and Kasahara
	ECMQV - Elliptic Curve Menezes-Qu-Vanstone
	Bandwidth and Energy Consumption

	NIKE and Symmetric Key-Based KMS
	Conclusions
	References

	Anonymous and Transparent Gateway-Based Password-Authenticated Key Exchange
	Introduction
	Motivation
	Related Work
	Contributions

	Security Model
	Notation
	Security Model

	Our New GPAKE Protocol
	Description of Our Scheme
	Zero-Knowledge Proof of Knowledge of Discrete Logarithm
	Computational Assumptions
	Security Result

	Adding Client Anonymity
	Conclusion
	References

	Cryptanalysis of EC-RAC, a RFID Identification Protocol
	Introduction
	Related Works
	Outlines

	EC-RAC
	Security Claims of [14]

	Attack on EC-RAC
	The Tracking Attack
	The Impersonating Attack

	Security Definitions
	Identification Protocol
	Setup Algorithms
	Correctness
	Security against Impersonation
	Privacy
	Zero-Knowledgeness

	Computational Assumptions
	Our Proposal
	The Original Schnorr Scheme
	Randomized Schnorr
	Security: Correctness and Impersonation Resistance
	Privacy
	Zero-Knowledgeness

	Comparison of Our Proposal with EC-RAC
	Conclusion
	References
	A The One More Discrete Logarithm Assumption


	Cryptographic Algorithms and Protocols
	Counting Method for Multi-party Computation over Non-abelian Groups
	Introduction
	Reduction from Secure Computation to Graph Coloring
	Random Coloring and Counting Method
	The Counting Method on Square Lattices
	Conclusion and Open Problems
	References
	A Proofs of Three Properties of Right-Left Minimal Cutsets on  $G_{sqr}(\ell,\ell)$

	Keyword Field-Free Conjunctive Keyword Searches on Encrypted Data and Extension for Dynamic Groups
	Introduction
	Related Work
	Preliminaries
	Definitions
	The Bilinear Pairings
	Complexity Assumptions

	KFF-CKS
	Extension in the Dynamic Group Setting
	Construction
	Security
	Discussion
	Comparison of Authentication
	Comparison of Encryption and Decryption

	Conclusions and Open Problems
	References

	Analysis and Design of Multiple Threshold Changeable Secret Sharing Schemes
	Introduction
	Preliminaries
	Threshold Changeability for Secret-Sharing Scheme
	Definition and Efficiency Measures
	Upper Bounds on the Security Rate and the Information Rate

	Threshold Changeability for CRT Secret-Sharing Schemes
	CRT Secret Sharing Scheme
	A New CRT-Based Secret Sharing Scheme
	Construction of a Multiple Threshold Changeable Secret Sharing Scheme
	Scheme Analysis
	Comparison

	Conclusion
	References

	Black-Box Constructions for Fully-Simulatable Oblivious Transfer Protocols
	Introduction
	This Work
	The Technique

	Oblivious Transfer Protocols
	Security in the Presence of Defensible Adversaries
	Black-Box Access to Homomorphic Encryption Algorithm
	Achieving Security against Defensible Adversaries

	Black-Box Constructions of Oblivious Transfer Protocols in the Presence Malicious Adversaries
	Adversarial Model
	Achieving Security against Malicious Adversaries

	Conclusion
	References
	Appendix A

	Skew Frobenius Map and Efficient Scalar Multiplication for Pairing–Based Cryptography
	Introduction
	Fundamentals
	Elliptic Curve
	Twist Technique
	Conventional Skew Frobenius Map [9]
	Ate Pairing and Twisted Curve
	GLV Scalar Multiplication [6]

	MainProposal
	Twisted Rational Point
	New Skew Frobenius Map
	A Relation among  $\chi$, $p$, and $\NSkew$
	Scalar Multiplication in $E(\F{p}{})$ with $\NSkew$
	Other Pairing–Friendly Curves

	Simulation
	Conclusion
	References
	A Proof of Eq.(30)


	Stream Ciphers and Block Ciphers
	Cryptanalysis of MV3 Stream Cipher
	Introduction
	A Brief Description of the MV3 Cipher
	Key Initialization
	Internal State
	Security Discussion

	Cryptanalysis of the MV3 Cipher
	Preliminaries
	A Distinguishing Attack on MV3
	Other Biases
	Simulation Results

	Conclusions
	References
	Appendix A
	Appendix B

	3D: A Three-Dimensional Block Cipher
	Introduction
	The 3D Block Cipher
	Key Schedule of 3D
	Security Analyses
	Plaintext Leakage
	Related-Key Attack
	Non-surjective and Davies’ Attacks
	Interpolation, Higher-Order Differential and  $\chi^2$ Attacks
	Slide and Advanced-Slide Attacks
	Truncated Differential Analysis
	Linear Analysis
	Multiset Analysis
	Impossible Differential Analysis

	Software Performance
	Conclusions
	References


	Cryptographic Foundations
	Construction of Resilient Functions with Multiple Cryptographic Criteria
	Introduction
	Preliminaries
	Construction of Resilient Functions with Multiple Cryptographic Criteria
	Conclusion
	References

	Enumeration of Homogeneous Rotation Symmetric Functions over $F_p$
	Introduction
	Preliminaries
	Enumeration of Homogeneous Rotation Symmetric Functions
	Conclusion
	References

	Unconditionally Reliable Message Transmission in Directed Hypergraphs
	Introduction
	Digraph Network Model and Non-threshold Adversary

	Characterization for URMT in Directed Hypergraph
	URMT in Digraphs Tolerating Non-threshold Adversary
	A Sufficient Condition for URMT Tolerating ${\mathcal A} \subseteq {\mathbb A}$ with $|\bar{\cal A}| = 2$
	Relaxing the Sufficiency Condition of Theorem 3

	Definition of URMT-BEF-Closure-Digraph
	Characterization of URMT Tolerating ${\cal A}$ with $|\bar{\cal A}| = 2$
	Characterization of $URMT_{special}$ on ${\cal D}_{under}$
	References


	Applications and Implementations
	An Open Framework for Remote Electronic Elections
	Introduction
	The Open Voting Framework
	Agents
	Credentials
	Registration
	Voting and Tabulation

	Security Requirements
	Security of e-Voting

	Cryptographic Protocols
	Setup
	Credential Generation
	Registration Protocol
	An Example of Voting and Tabulation

	Conclusion and Discussion
	The Authorization Proxy
	Formal Analysis

	References

	Conditional Payments for Computing Markets
	Introduction
	The Setting
	Ringers - An Overview

	Our Overall Approach
	Payment Splitting Based on Secret Splitting
	Computation Overhead
	Analysis

	Related Work
	Conclusions
	References

	High-Speed Search System for PGP Passphrases
	Introduction
	Overview of the Search System
	Short Description of FPGA
	Passphrase-Based Security of PGP
	Search System for PGP Passphrases

	PGP Algorithms in Detail
	Passphrase Hashing
	Encryption Using a Block Cipher
	Passphrase Filtering Algorithm

	Implementation Architecture
	Passphrase Padding Logic
	Pipelined Hash Function
	Other Logics

	Evaluation
	Performance of the Circuit
	Concrete Example Figures of the Search System
	Hints to Improve the PGP Security

	Using Embedded FPGA Systems for Cryptanalysis
	Conclusion
	References

	Workload Characterization of a Lightweight SSL Implementation Resistant to Side-Channel Attacks
	Introduction
	Secure Sockets Layer Protocol
	SSL Handshake
	Elliptic Curve Diffie-Hellman (ECDH)
	Elliptic Curve Digital Signature Algorithm (ECDSA)

	Side-Channel Attacks
	SCA on ECC-Based SSL Handshake
	Protecting ECC against SCA

	Implementation
	Straightforward ECC Implementation
	SCA-Resistant ECC Implementation

	Experimental Results
	Conclusions
	References


	Security in Ad Hoc Networks and Wireless Sensor Networks
	Authenticated Directed Diffusion
	Introduction
	Interest Propagation Phase
	Routing Setup Phase
	Reinforcement Phase
	Data Propagation Phase

	Security Concern of Directed Diffusion
	DoS Attack
	Bogus Routing Information
	Sinkholes Attack
	Other Attacks

	Related Works
	Authenticated Directed Diffusion Protocol
	Pre-load Setup
	Step1- Interest Propagation
	Gradients Establishment
	Path Reinforcement
	Data Routing Back

	Security Analysis
	Remain Security Issue

	Performance Analysis
	Comparison
	Communication Overhead

	Conclusion
	References

	A New Message Recognition Protocol for Ad Hoc Pervasive Networks
	Introduction
	Literature Review on Message Recognition Protocols
	A New Message Recognition Protocol without the Use of Hash Chains
	Security Assumptions
	Security of the Proposed Recognition Protocol
	One-Session Attacks
	Two-Session Attacks
	The Security Theorem

	Conclusion and Final Remarks
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




